

Penetrator for Environmental, Regolith, and Crater Investigation

Rawan Aljaber, Will Combs, Stephen Hyde, Saima Jamal, Sanjana Kerkar, Sean McClary, Jayveer Phull, Ted Saenger, Tao Sevigny, Rahul Shirishkar, Samantha Torres, Aryanna Thompson, Miguel Silva de Lancastre Du Boulay Villax, Kimberly Zwolshen

Agenda

- Team
- Challenge & Approach
- Scope
- Mission Concept
- Task Organization
- Execution Path
- Science
- System Requirements
- Subsystems
- Conops
- Risk
- Budgets
- Schedule
- Future Work
- Conclusion

Team

Ted

Tao

Jay

Rawan

Will

Mentors

Buzz Emotional Support Mentor

Dillan McDonald Mentor

Ananyo Bhattacharya Mentor

Miguel

Kim

Sanjana

Aryanna

Stevie

Saima

Samantha

Sean

Rahul

Honorable Mention

Team Structure

Team LeadTed Saenger

System Rawan			PYLD Lead aenger	The second secon	ion Lead er Phull		S Lead a Kerkar	Power/Co Sean M	mms Lead 1cClary		r es Lead er Phull		aal Lead Sevigny
Tao	Will	Rahul	Kimberly	Stephen	Sanjana	Jayveer	Samantha	Samantha	Ted	Ted	Kimberly	Rawan	Jayveer
Samantha	Ted	Aryanna	Will	Sama	antha	Sa	ima	Jay	veer	Stephen	Will	Т	ed
		Miguel	Saima							Miguel	Saima		

Challenge & Approach

Challenge:

- Enhance the science return of NASA's Uranus Orbiter & Probe (UOP)
 mission, the top priority of the 2023-2032 Planetary Science Decadal Survey
- UOP to conduct multi-year observations of the Uranian system focused on:
 - Planet's origin, interior and atmosphere
 - Magnetic field and magnetosphere
 - Uranian satellites and ring system

Our Approach:

- Work closely with mentors to refine mission constraints and feasibility
- Use NASA SIMPLEx as a guideline, allowing flexibility for mission needs
- Develop a small, secondary spacecraft to accompany the main mission
- Focus on major Uranian satellites: Miranda, Ariel, Titania, Oberon, Umbriel
- Align design with Decadal Survey priorities and scientific community needs
- Draw inspiration from mission concepts like Europa Clipper & Huygens Probe

Project Scope & Deliverables

By the end of project the following deliverables will be produced:

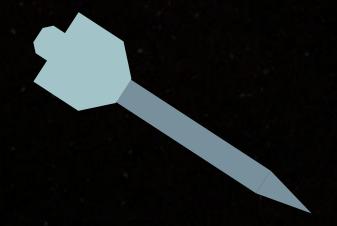
- Science Traceability Matrix
- Science instruments recommendations and trades studies
- Top-level, system-level, and subsystem-level requirements
- Concept of Operations architecture
- Spacecraft design decisions with relevant trade studies
- Risk and budget analysis
- Final report on work accomplished
- □ Academic paper for conference

Mission Concept - PERCI

- Penetrator spacecraft
- Separates from UOP and enter an impact trajectory into a selected target moon
- Impact creates a debris cloud for UOP observance
- On impact survival, can measure surface science data
- Data is compressed and transmitted to UOP using the same comms architecture as the UOP probe

Pentrator CAD, w/ SRBs

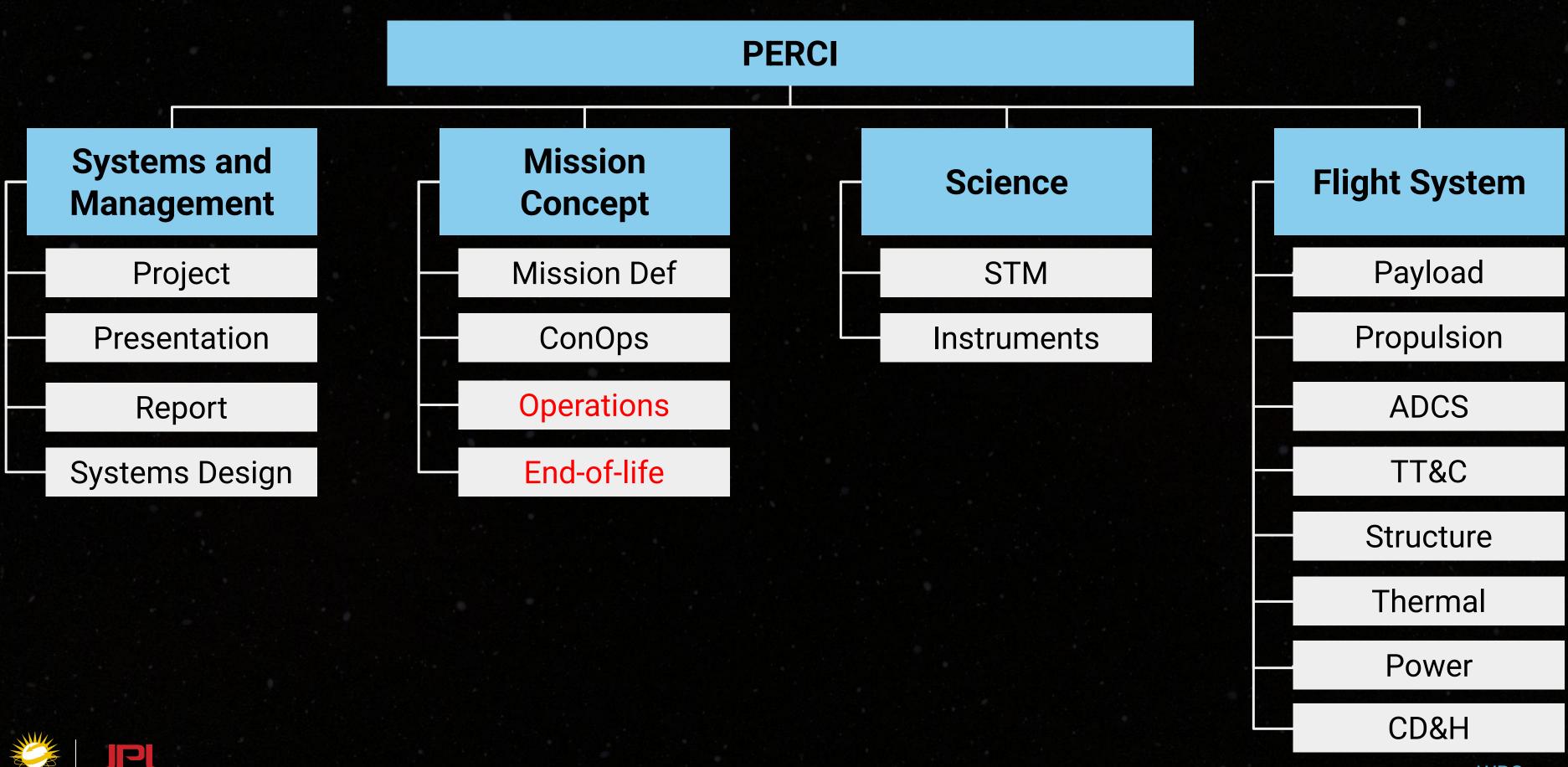
Pentrator CAD, w/o SRBs


Mission Concept (Cont.)

DeploymentDetach from orbiter

Descent

Collect images and transmit back to orbiter



Penetration

Record science data and transmit back to orbiter

Task Organization

Milestone

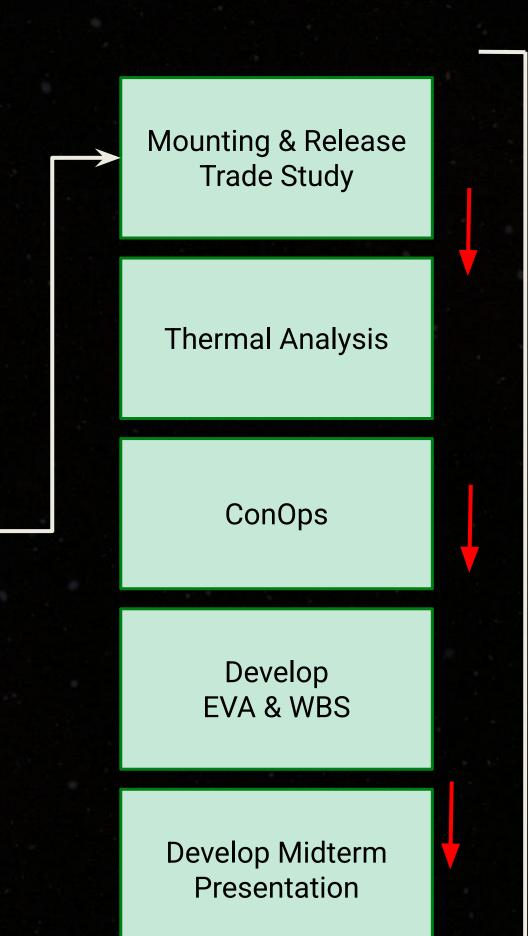
Mission

Concept Decision

10

Decadal Survey Research

Instrument Identification and Scientific Trade **Studies**


Trace and Decompose **Functional** Requirements

Finalize STM

Impact Survivability

Concept Feasibility and Trade Study

Explore Mission Concepts

Milestone

Midterm Presentation

Mature Concept: Hardware, Controls, EOL Plan, Materials, Trajectory Develop Risk Management & **Budgets**

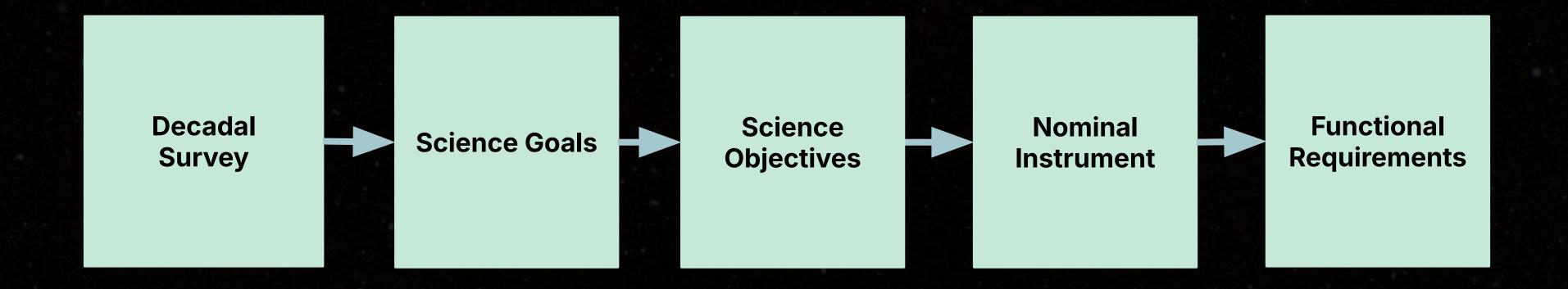
Finalize Risk Analysis and Budgets

> **Develop Final** Presentation

Develop Final Report

Approach to Science Enhancement

What can PERCI accomplish that the UOP mission cannot by itself?


- In-situ surface measurements represent a weakness in the UOP's science return that this secondary payload can strengthen
- PERCI can support the UOP's analysis of Uranian satellites to provide more science return

Objectives:

- Quantify chemical abundances from impact plumes
- Measure surface composition, topography, and mineralogy
- Measure surface hardness and conduct ice failure tests
- Observe impact events and ejecta distribution (surface, escape, orbit)
- Determine interior structure and ice sheet thickness
- Measure thermal conductivity and surface heat dissipation patterns

Science Traceability

Science Traceability Chart (1/4)

Decadal Survey

Science Goals

Science Objectives / Measurements

Nominal Instrument

Functional Requirements Q12.8a What Can Observations of Material Reveal **About Formation** Circumplanetary Systems?

the surface

04.4b What Materials Ejected from Impact Craters Are Deposited on Planetary Surfaces?

Q5.1c How Does Porosity, Ices, Liquids, or Gases Affect the Physical Properties of the Crust?

Q5.1a How Much Variability in Composition and **Internal Structure** Is There Within and Between Solid Bodies, and How Did Such Variability Arise and Evolve?

Q8.2f How Are **Heat and Material** Transported Through—and **Ultimately Out** of-Satellite Interiors?

Collect images of

Determine the chemical composition of the moon's surface

Determine the physical properties of the large moon's surface at the point of impact

Probe the interior of the Uranian satellites

Determine the thermal properties of the moon's surface

Science Traceability Chart (2/4)

Decadal Survey **Science Goals Science Objectives** / Measurements **Nominal Instrument Functional** Requirements

Collect images of the surface

Determine the chemical composition of the moon's surface

Determine the physical properties of the large moon's surface at impact

Probe the interior of the Uranian satellites

Determine the thermal properties of the moon's surface

Determine the surface

topography

Images of surface in nadir and azimuth

Identify and quantify the relative abundances of key chemical elements and minerals present on the moon's surface from the impact plume

Vis/NIR Spectroscopy Species: 1.5-2.5 um (H2O, C, silicates) Determine the surface hardness of the Uranian moons

Deceleration profile

Determine the interior composition and structure of the Uranian moons

Determine the thickness of the ice sheet

Seismic noise:
Coda of body
waves, harmonic
frequency of
Crary Waves

Determine the thermal conductivity and heat dissipation rates as well as their variation at different (2) depths

Post-impact temperature decay

Science Traceability Chart (3/4)

Decadal Survey

Science Goals

Science Objectives/ Measurements

Nominal Instrument

Functional Requirements

Determine the spectral composition and topography of the surface

Images of surface in nadir and azimuth

Identify and quantify the relative abundances of key chemical elements and minerals present on the moon's surface from the impact plume

Vis/NIR Spectroscopy Species: H2O, CO2, CH4, N2 Determine the surface hardness of the Uranian moons

Conduct in-situ ice failure studies on the surface

Deceleration profile

Determine the interior composition and structure of the Uranian moons

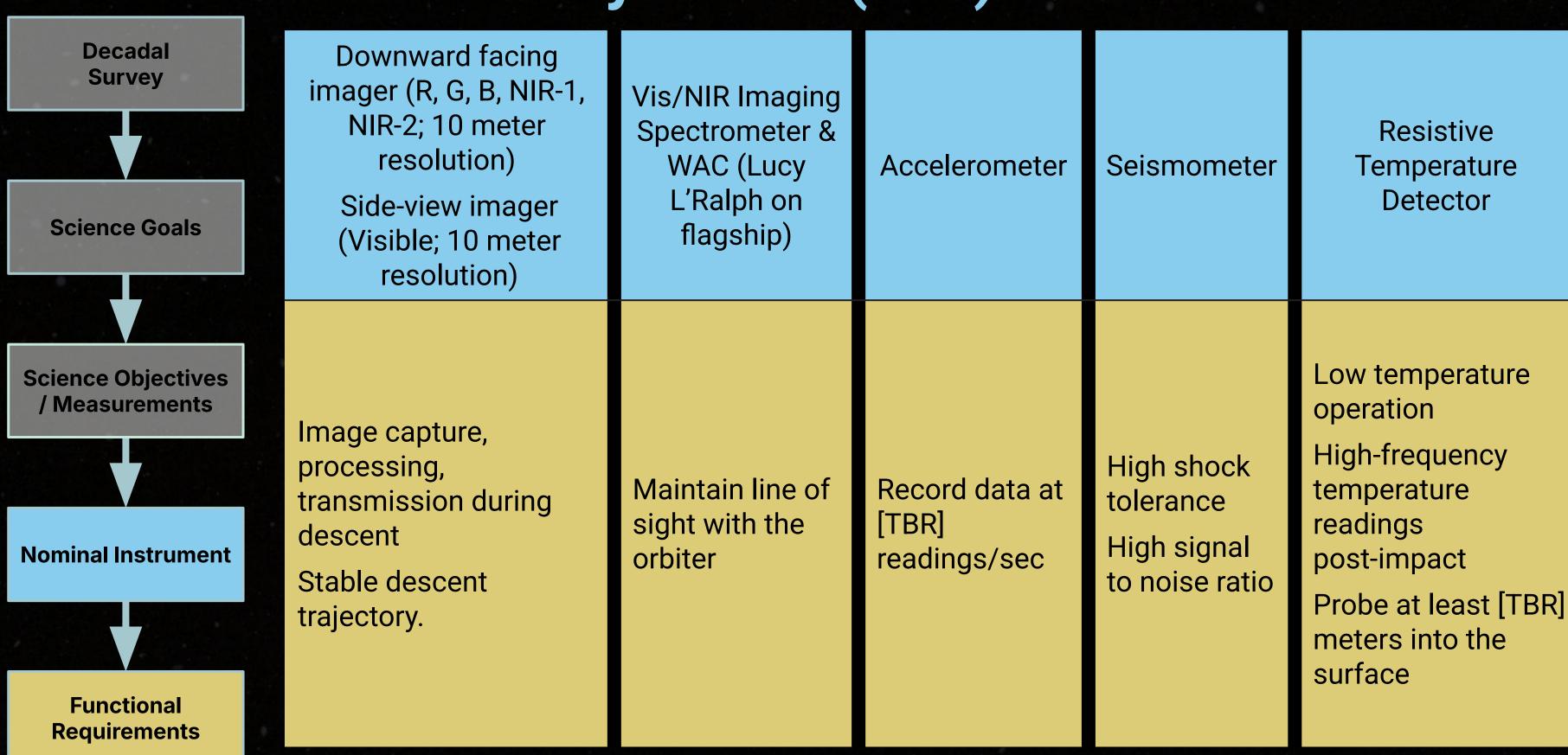
Determine the thickness of the ice sheet

Seismic noise: Coda of body waves, harmonic frequency of Crary Waves Determine the thermal conductivity and heat dissipation rates as well as their variation across the surface

Post-impact temperature decay

facing multi-spectral imager (R, G, B, NIR-1, NIR-2; 10 meter resolution)

Downward-

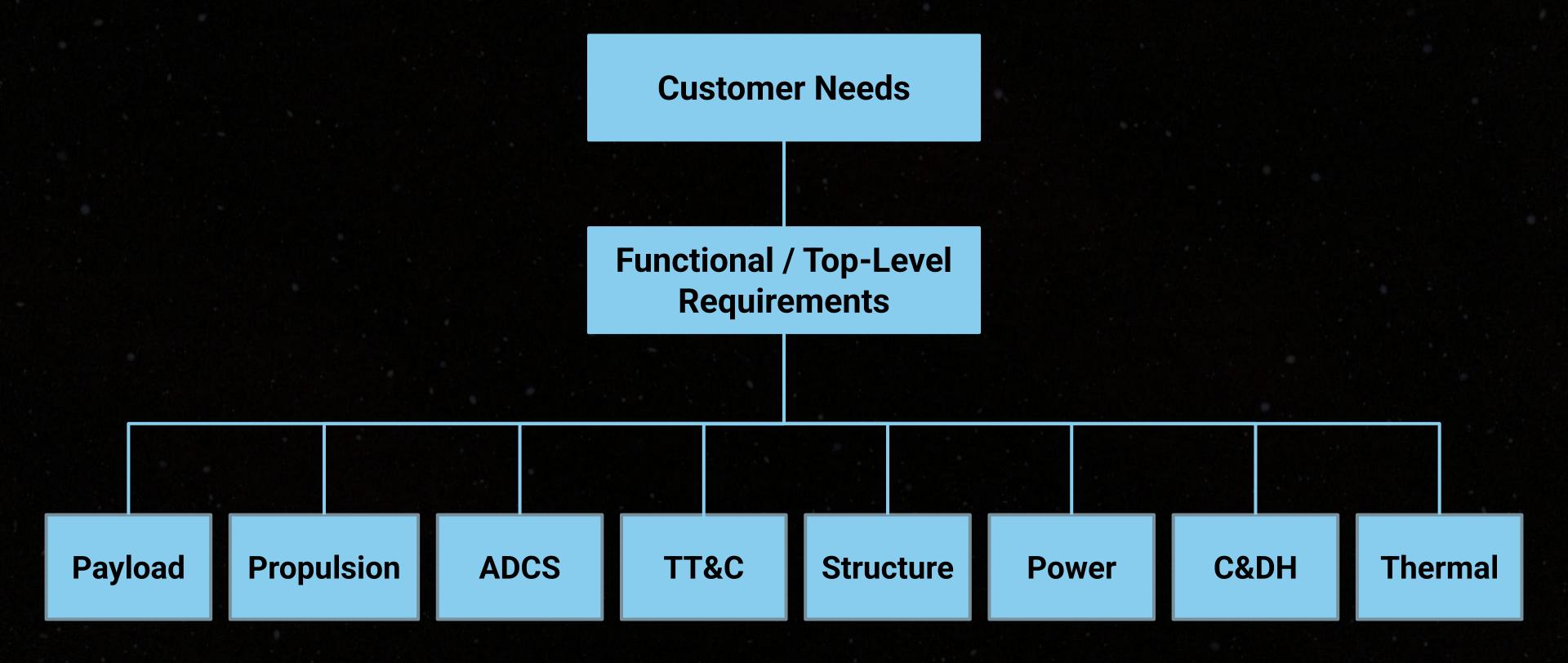

Side-view imager (Visible; 10 meter resolution) Vis/NIR Imaging Spectrometer

Accelerometer

Seismometer

Resistive Temperature Detector

Science Traceability Chart (4/4)


Instrument Suite Summary

Trade studies were conducted to select the following payload instruments

Instrument	Instrument Selection	Important Criteria
Camera	OSIRIS REX SamCam/TAGCAMS (ECAM M50)	 High survivability (radiation/thermal) Excellent operation in low light conditions
Imaging Spectrometer	Vis/NIR Imaging Spectrometer & WAC (Lucy L'Ralph on flagship)	 Spectral Imaging allows for surface composition data Offset to orbiter, more simplicity
Accelerometer	PCB Piezotronics Accelerometer	 Sufficiently large temp. operating range High amplitude range / shock tolerance
Seismometer	Artius Seismometer	 Broad spectrum for high and low freq. vibration High tilt tolerance
Thermal Probe	Cernox RTD	 Quick Thermal Response Time High Measurement Reproducibility

Requirements Flowdown

Customer Needs

ID	Requirement Name	Justification	Verification Method
SYS_CN_1	Sizing Needs	The system assembly shall fit within the payload fairing of the launch vehicle	Inspection
SYS_CN_2	Enhance Science	The system shall enhance the scientific objectives of the UOP mission	Analysis / Test
SYS_CN_3	TRL	The system shall use COTS and TRL 6+ technology	Inspection / Analysis
SYS_CN_4	SIMPLEX Need	The system shall adhere to NASA's SIMPLEx program	Inspection
SYS_CN_5	Power	The system shall not exceed a power draw of [2W] from the flagship	Analysis / Test
SYS_CN_6	Impedance	The system shall not impede performance of the flagship mission	Analysis / Test
SYS_CN_7	Do No Harm	The system shall do no harm to the flagship	Analysis / Test
SYS_CN_8	Data Transmission	The system shall transmit all data to the orbiter at a maximum data rate of 20.1 kbps	Analysis / Test

Top Level Requirements

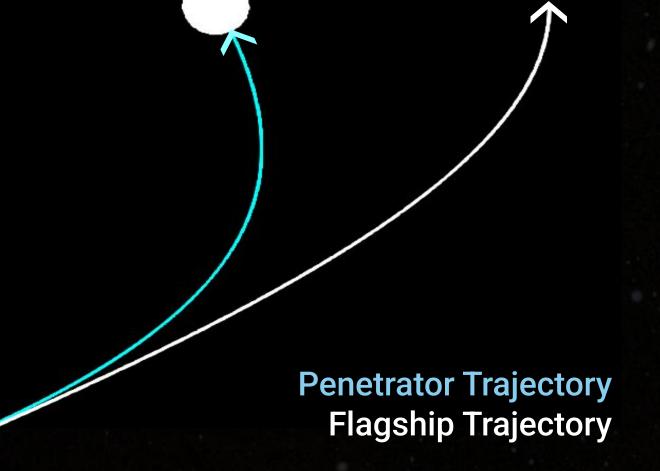
ID	Requirement Name	Justification	Verification Method
SYS_TL_1	Science Goals	The system shall support the current NASA planetary science goals	Analysis
SYS_TL_2	Planetary Protection	The system shall adhere to the NASA planetary protection guidelines for forward contamination	Inspection / Test
SYS_TL_3	Orbiter ΔV	The system separation from the orbiter shall not impede the Orbiter's trajectory	Analysis / Test
SYS_TL_4	Heat Flow	The system shall not have greater than [TBR] W of heat flow to/from the flagship	Analysis / Test
SYS_TL_5	Temperature	The system shall maintain all components within their temperature limits with ±5°C margin	Analysis / Test

Constraints

ID	Requirement Name	Justification	Verification Method
SYS_C_1	SIMPLEX Constraint	The system shall meet the critical development milestones per the NASA SIMPLEx guidelines	Inspection
SYS_C_2	Mass Constraint	The system shall not exceed a wet mass of 180 kg	Inspection
SYS_C_3	Volume Constraint	The system should not exceed a total volume of 0.42 m³/(1.19 m³ w/ESPA ring)	Inspection
SYS_C_4	Cost Constraint	The system should not exceed a cost of \$55 million for all mission phases	Analysis
SYS_C_5	Comms Constraints	The system shall be able to communicate with the main orbiter	Analysis / Test
SYS_C_6	Fairing Constraint	The system, when integrated with the UOP system, shall fit within the Falcon heavy fairing volume	Inspection

PERCI Mission Functional Requirements

ID	Requirement Name	Justification	Verification Method
SYS_MFR_1	Mission Support	The system shall support continuous operation to payload, CDH, TT&C, power, and thermal subsystems	Analysis
SYS_MFR_2	Pointing Stability	The system shall have appointing stability of [TBR] (such to reduce image blur) during descent trajectory	Analysis / Test
SYS_MFR_3	Shielding	The system shall shield the imagers from dust and other hazards during approach and descent	Analysis / Test
SYS_MFR_4	Survival	The system should survive the impact, with all necessary components still operational	Analysis
SYS_MFR_5	Deceleration Profile	The system should record the deceleration profile at the time of impact.	Analysis



Subsystems

Trajectory Analysis Overview

- Approximate flagship trajectory around target moons
 - \circ Based on deployment location and ΔV
- Optimize trajectories
 - Feasible ΔV
 - Minimize impact velocity
 - Impact angle close to 90°
 - Line of sight of flagship

Trajectory Paths

Moon	Flyby	Time Before Closest Approach [hrs]	∆ V [m/s]	Impact Velocity [m/s]	Impact Angle [deg]	Flight Duration [hrs]
Ariel	7/29/47	3.0	479	1170	89	2.8
Oberon	7/28/47	4.7	414	1397	84	6.1
Titania	8/11/45	2.5	820	2258	85	3.3
Umbriel	6/22/47	4.4	415	901	86	4.2

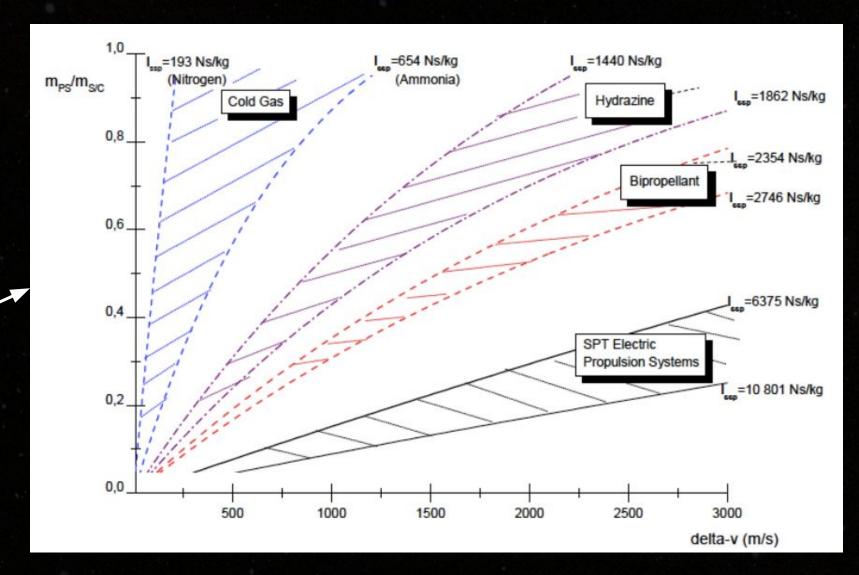
Trajectory Analysis Overview

- Approximate flagship trajectory around target moons
 - Based on deployment location and ΔV
- Optimize trajectories
 - Feasible ΔV
 - Minimize impact velocity
 - o Impact angle close to 90°
 - Line of sight of flagship

Moon	Flyby	Time Before Closest Approach [hrs]	∆V [m/s]	Impact Velocity [m/s]	Impact Angle [deg]	Flight Duration [hrs]
Ariel	7/29/47	3.0	479	1170	89	2.8
Oberon	7/28/47	4.7	414	1397	84	6.1
Titania	8/11/45	2.5	820	2258	85	3.3
Umbriel	6/22/47	4.4	415	901	86	4.2

Propulsion Requirements

Propulsion subsystem shall:

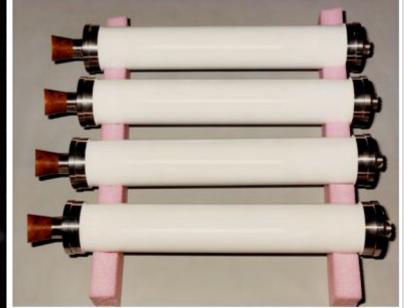

- Provide a minimum of 450 m/s of delta-V during all relevant mission phases
- Decouple from the penetrator prior to impact
- Be kept within survival temperatures during all mission phases
- Be kept within operating temperatures during the required mission phases
- Have COTS components with TRL 6+

Propulsion Overview (1/2)

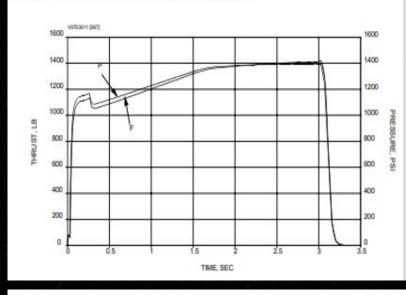
Solid Rocket Booster (SRBs) would be the best for this mission as they are:

- Inert
- Easy to start
- Will not leak propellant
- Low cost
- Weight can be shed for lower impact energy
- Low battery power requirement
- Meets Do No Harm Requirements
- High Delta V @ low prop mass/volume

Delta V Limits Based on Propellant-Spacecraft Mass Rational and Propellant



Propulsion Overview (2/2)


	Initial Constraints							
SRB	Total Impactor SRB Load Mass		SRB Empty Mass	ISP	g			
Star 5D:	160Kg	10.23Kg	3.32Kg	256 Seconds	9.81 m/s ²			

# Of Motors	ΔV
1 Motor	139 m/s
2 Motors	265 m/s
3 Motors	379 m/s
4 Motors	476 m/s

Note: ADCS thrust vectoring can be used to meet ΔV requirements for the intended trajectory.

The STAR 5D rocket motor was designed and qualified (1996) to serve as the rocket-assisted deceleration motor on the Mars Pathfinder mission for the Jet Propulsion Laboratory (JPL) in Pasadena, CA. The STAR 5D features a titanium case, headend ignition system, and canted nozzle design and is based on earlier STAR 5 designs. Three of these motors were fired on July 4, 1997, to slow the Pathfinder spacecraft to near-zero velocity before bouncing on the surface of Mars.

Motor diameter, in	
Motor length, in	32.7
MOTOR PERFORMANCE (-22°F V	ACUUM)
Burn time/action time, sec	3.03/3.28
Ignition delay time, sec	0.029
Burn time average chamber pressure, po	sia1,299
Maximum chamber pressure, psia	1,406
Total impulse, lbf-sec	3,950
Propellant specific impulse, lbf-sec/lbm	259.5
Effective specific impulse, lbf-sec/lbm	256.0
Burn time average thrust, lbf	1251
Maximum thrust, lbf	1,410
NOZZLE	
Initial throat diameter, in	0.869
Exit diameter, in	2345

MOTOR DIMENSIONS

Expansion ratio, initia

Cant angle, deg.

WEIGHTS, LBM

Total loaded 22.55 Propellant (including igniter propellant) 15.22 Case assembly 5.93 Nozzle assembly 1.40 Total inert 7.33 Burnout 7.12 Propellant mass fraction 0.68 TEMPERATURE LIMITS

PRODUCTION STATUS
......FLIGHT-PROVEN

$$\Delta v = (v_e := I_{sp} * g_0) * \ln \left(rac{m_0}{m_f}
ight)$$

Delta V equation and SRB Data Sheet

SRB Mounting/Ejection

To minimize risk/potential damage to the spacecraft

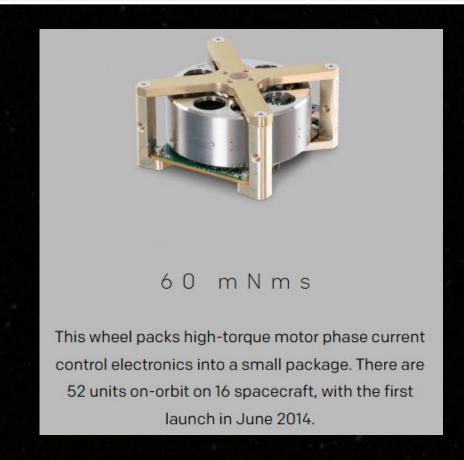
- SRBs will be mounted with the nozzles facing aft via spring lock mechanism
 - Avoids the hot gasses from interfering with the main body/tip
- Staggered SRB ejection to induce a 180° rotation without ADCS to prevent saturation
 - Allows for the tip to point in the direction of travel
 - Spring loaded ejection with burn wire trip
 - Spacecraft flip slew rate to not exceed 10°/sec

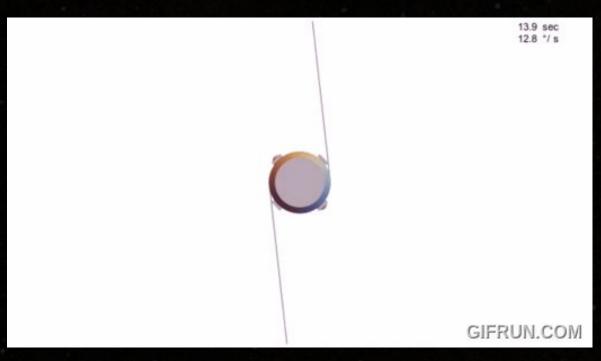
Penetrator CAD

ADCS Requirements

ADCS subsystem shall:

- Provide accurate pointing within 1° post SRB burn to support communications with Flagship Orbiter
- Provide accurate pointing within 1° during the descent/pre-impact phase
- Provide pointing stability of [TBR] during descent phase
- Have all components be COTS with a TRL of 6+




ADCS Design

- Greatest Disturbance Torque:
 - Gravity Gradient From Uranus: ~1.5*10^-9 Nm

Reaction Wheel	/heel Maximum Torque		Size	Operating Lifetime	Nominal Power Draw	Peak Power Draw
Rocket Lab: 60mNms	SRB Slew Rotation: ~10°/s	288g	77mm x 65mm x 38mm	5 hours	1.8 Watts	60 Watts

- Attitude Sensors:
 - 2 Star Trackers
 - 3 Axis IMU
 - 3 Axis Accelerometer
- Spin Up: [TBR]
- Spin Down: Yo-Yo Desaturation

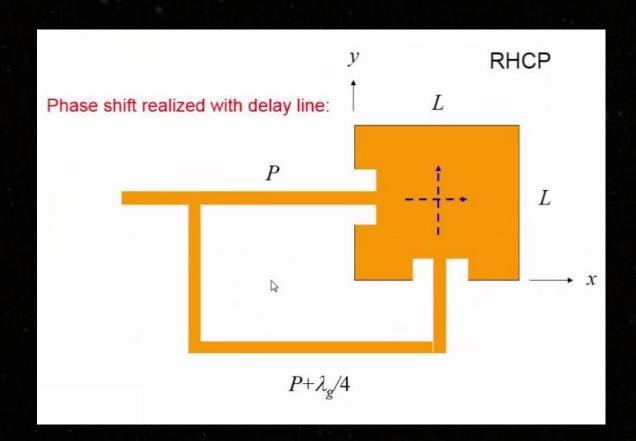
Yo-Yo Desaturation Simulation

Rocket Lab Reaction Wheel

TT&C Requirements

TT&C subsystem shall:

- Transmit data at a rate fast enough to complete transfer during orbiter overhead pass
- Operate at a frequency optimal for probe size and environment
 - Constrained by probe surface area, orbiter frequency capability, surface composition


TT&C subsystem should:

Survive and be operational during and following impact

TT&C

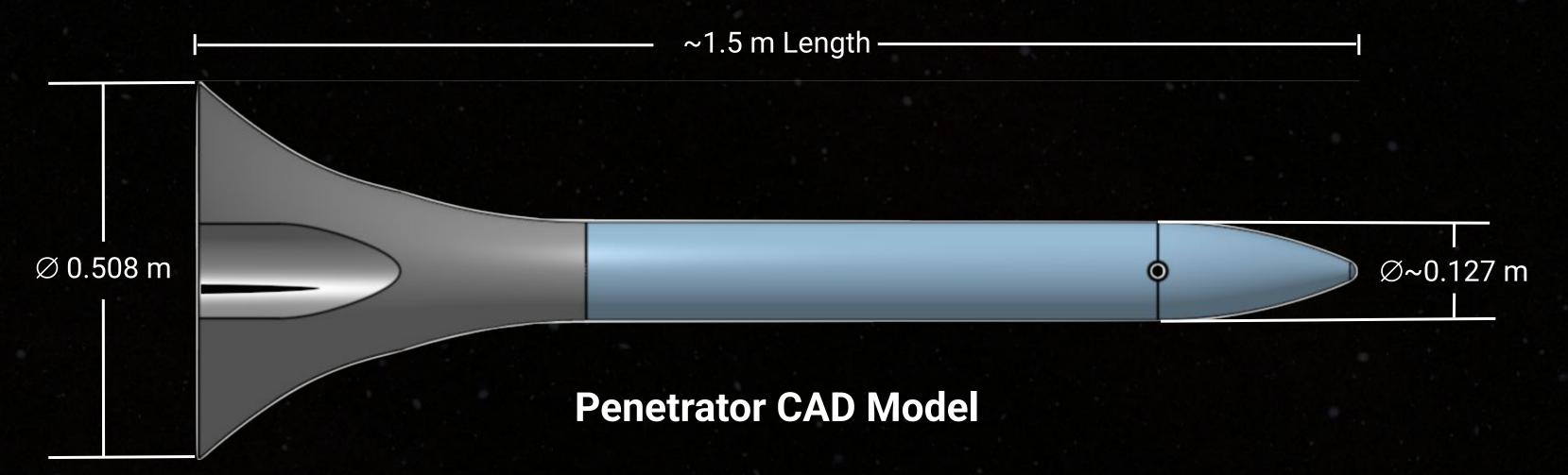
- Antenna Design: Patch w/ integrated polarization
 - No moving/deployable parts necessary
 - 6dBi Gain
- Optimal Frequency: 2GHz (low-S-band)
 - 15cm wavelength takes advantage of maximal exposed rear-facing surface area
 - Low S-band allows penetration of ice if antenna is covered
 - Ice attenuation: 0.05-0.6 dB/m depending on composition (vs 65dB/m for water)
- Link budget allows for -104dBm received power on orbiter, at 10° mismatch, -118dBm at 45°
- Data margin allows for 2.14mbps data rate using maximum margin (~1dB). 10kbps at 15dB margin

Patch antenna geometry and design

Structures Requirements

Structure subsystem shall:

- Contain and protect all components during the launch, transit and deployment phases
- Protect all operating components during the science phase pre-impact
- Fit within the allocated payload static envelope for the launch vehicle while attached to the orbiter with [TBR] margin
- Shield the imagers from dust and other hazards during approach and descent


Structure subsystem should:

Protect all post-impact operating components during impact

Structure: Penetrator Design

The preliminary design is for a penetrator comprised of 3 parts:

Flare

- Transmitter/Receiver
- SRBs
- Material: steel (grade TBR)

Main Body

- Batteries
- Instrumentation
- ADCS
- Material: steel (grade TBR)

Nose Cone

- Instrumentation
- Material: Titanium

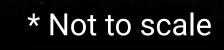
Structures: Impact Overview

Hand Calculations

Three models used:

- 1. Hypervelocity Impacts on Low-temperature ice Late Stage Effective Energy
- 2. Tate-Alekseevski model Rigid-Body Penetration
- 3. Spherical Cavity-Expansion Approximation Ogival Nose Rod

Main Assumptions


- Homogenous, solid Ti penetrator impacting solid water ice
- Standard constants / coefficients for Ti-6Al-4V grade Titanium.
- Experimentally determined values for glacier ice.

Important Dependencies

- Impact velocity
- Geometry / mass of the projectile
- Material properties of the target / projectile

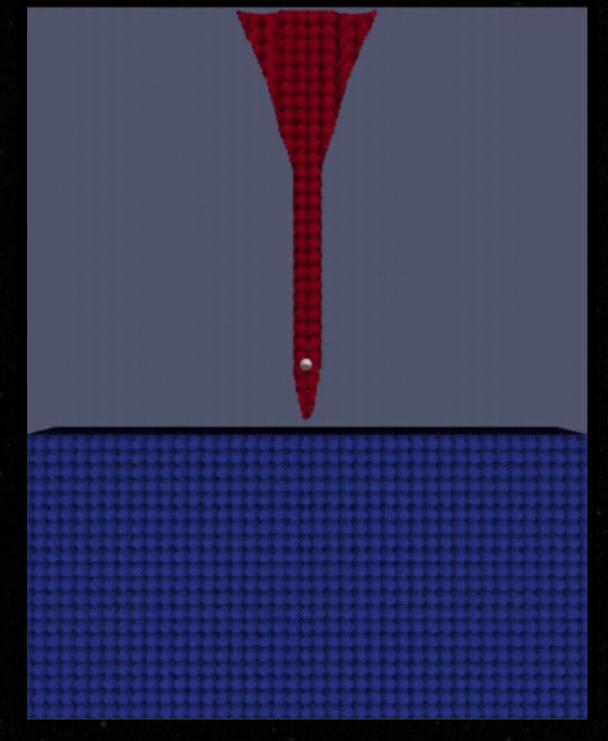
Results:

- Impact force range: ~10-13MN
- Impact depth: ~3-4 m

Optimal impact state

Simulation, Results, Iteration

Initial Conditions:


- Solid aluminum body: 2.8 g/cm³
- Speed: 1 km/sec
- Impacting porous ice: 1 g/cm³

Results and Iteration:

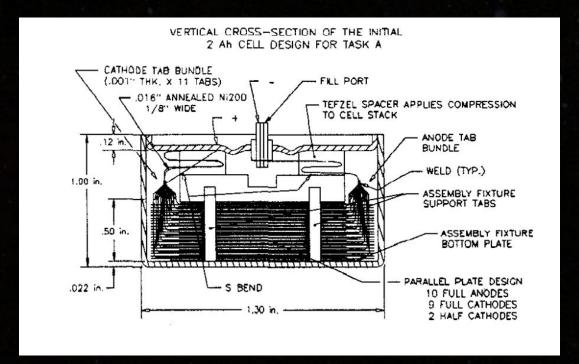
- Penetration depth estimation: ~3-5 meters
- Design of the following components can be done/iterated on:
 - Internal Structure:
 - Aluminum Honeycomb
 - Material Selection
 - Titanium Tip
 - High Grade Steel Body/Flare
 - Flare to Main Body Umbilical
 - Steel cables
 - Flare Separation
 - Separation Bolts
 - Flare Design Angle to Z-Axis
 - Estimated through transient FEA

Main takeaway:

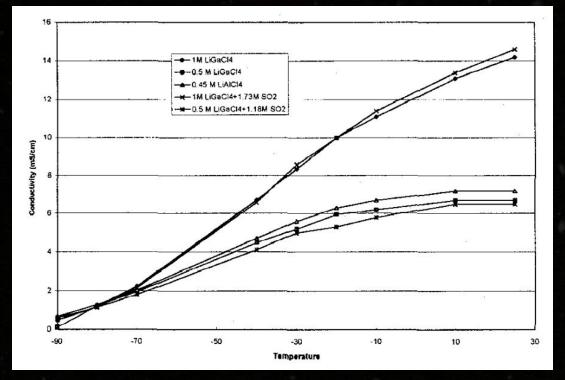
Aluminum is not a viable structural material

High-Velocity Ice Impact Simulation

Power Requirements


Power subsystem shall:

- Remain dormant during transit with minimal degradation
- Possess minimal risk of surface contamination in event of failure
- Possess constant current output capable of powering all science instrumentation, communications, C&DH, and heating coils
- Use TRL6+ components exclusively
- Operate at -20°C with minimal performance degradation
- Supply craft for 4.25 hr transit, and minimum 30 minute survival post-impact Power subsystem should:
 - Survive and be operational following impact



Primary Cell Trade Study Overview

- Comparison between consumer, defense, and custom-designed components
- Thermal batteries provide high power, but with drawbacks
 - Capacity
 - Heat Generation
- Traditional LTC and consumer-grade LiPo/LFP cannot handle impact conditions
- Solution: Custom designed cells from Deep Space 2 Probes
 - Tolerant of 80,000g impact
 - Sufficient capacity to power scientific instruments

Diagram of DS2 Probe cell interior

Electrolyte comparison of DS2 cells

Primary Cell Mass/Power

- Power Required During Descent:
 - ~23W
- Power Required Post-Impact, 30 min survival:
 - ~144W
- From a pure energy density perspective, only 500g of batteries are needed
- Additional cells required to spread current load per cell out
 - 4s48p Configuration allows a safe <1A/cell at lowest voltage
- Final Mass: 4 kg
- Final Volume: 4.1 L
- 3 hr Survival

4s48p configuration for safe	192 cells total
current distribution:	needed
FINAL MASS (kg)	4.03
FINAL VOLUME (L)	4.14

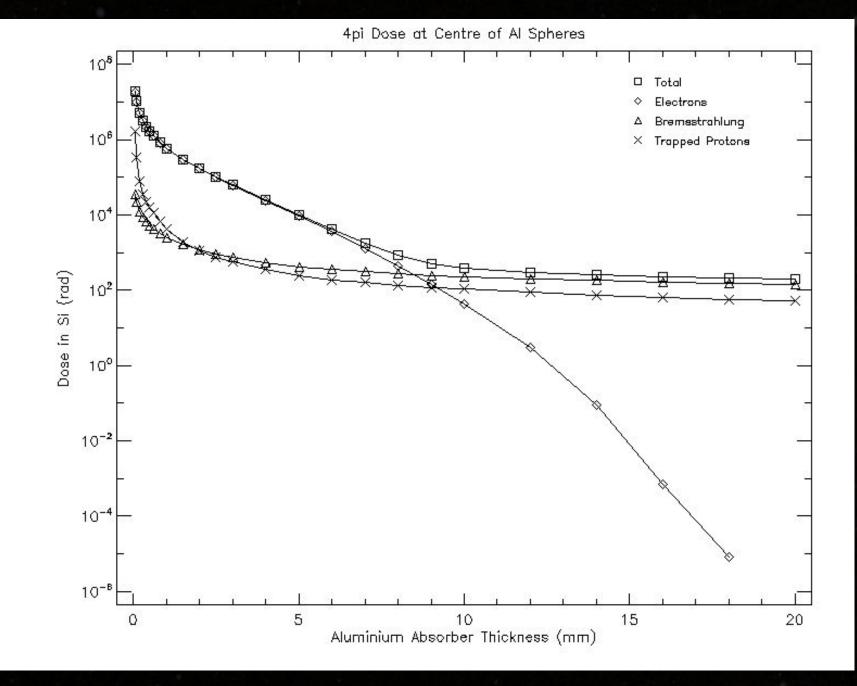
ON DESCENT/IMPACT ONLY			
	Worst-Case Power Draw	<u>Duty</u>	Average Power
<u>Instrument</u>	<u>(W)</u>	<u>Cycle</u>	Draw (W)
Simera Sense Multispectral			
Imager	5	1	5
Side-View Imager	5	1	5
Uniaxial Impact			
Accelerometer	0.25		0.25
MEMS Seismometer	1.5	0.01	0.015
Temperature Probe	0.01	1	0.01
Heating Coils	140	0.04	5.6
C&DH	2	1	2
Comms	5	1	5
	TOTAL POWER DRAW (W	V)	23
PROLONGED MISSION ONLY			
	Worst-Case Power Draw	<u>Duty</u>	
<u>Instrument</u>	(<u>W)</u>	<u>Cycle</u>	Average Power Draw (W)
Simera Sense Multispectral			
Imager	5	0	0
Side-View Imager	5	0	0
Uniaxial Impact			
Accelerometer	0.25	0	0
MEMS Seismometer	1.5	1	1.5
Temperature Probe	0.01	1	0.01
Heating Coils	140	1	140
C&DH	2	1	2
Comms	5	0.05	0.25
	TOTAL POWER DRAW (W	/)	144
CELL VOLU	JMETRIC ENERGY DENSIT	ΓΥ (Wh/L)	248
CELL GRAVII	METRIC ENERGY DENSIT	Y (Wh/kg)	330
	TOTAL ENERGY (J)	608756	
	TOTAL MASS (kg)	0.5	

C&DH Requirements

CD&H subsystem shall:

- Handle payload deployment, communication, management, and data processing
- Store and transmit data
- Withstand total radiation dose of 50 krad

CD&H subsystem should:


Survive and be operational following impact

Radiation Effects and C&DH

- Ionizing Radiation dose upon earth departure/Van Allen traversal simulated via SPENVIS
- Approx. 10krad w/ 5mm shielding
- 1k rad w/ 10mm shielding
- With additional shielding from penetrator body and orbiter, total dose less than 30krad
 - Microchip ATmegaS128
 - \circ 8-bit microcontroller, rad hardened version of μC line commonly used in Arduino
- Total data storage
 - 50GB

SPENVIS Ionizing radiation dose simulation near Earth

Thermal Requirements

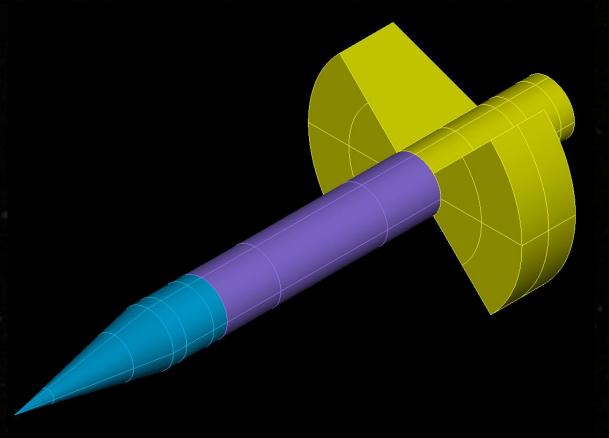
Thermal subsystem shall:

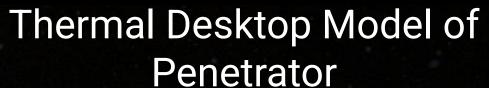
- Maintain all components within their survival temperature limits with ±5°C margin for relevant mission modes
- Maintain all components within their operational temperature limits with ±5°C margin for relevant mission modes
- Not allow greater than [TBR] W of heat flow to/from the flagship.
- Survive and be operational following all launch and deployment environments (i.e. shock, vibe, acoustics)
- Have necessary radiation resistance to survive in all mission radiation environments
- Use COTS and TRL 6+ technology

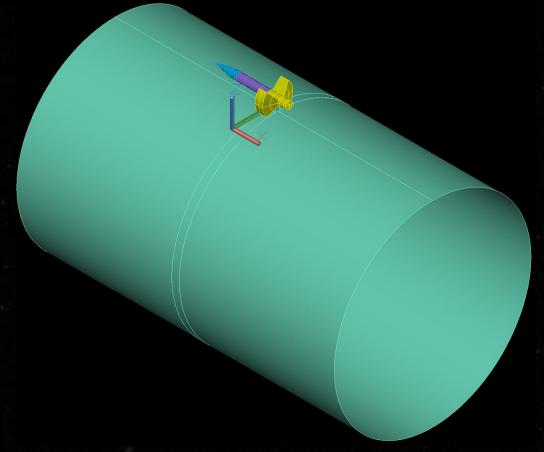
Thermal subsystem should:

Survive and be operational following maximum impact shock

Thermal Concerns


Thermal was identified as a high risk concern for this system


- Pre-Deployment Transit:
 - Limited power from orbiter
- Post-Deployment Transit:
 - Low environmental heating
- Post-Impact:
 - How long can components be keep operational in 30K ice?
- Multiple analyzes completed to confirm a solution is possible
 - Hot transit and orbit cases
 - Cold transit and orbit cases
 - Cold surface embedment case



Thermal Summary

- Confirmed that there is a viable thermal solution through thermal analysis
- Room for improvement on thermal design
- Lots of passive thermal control is required
- Active thermal control:
 - Up to 140 W heater power for operation modes
 - As low as <1 W heater power for survival modes

Thermal Desktop Model of Penetrator on Orbiter

ConOps

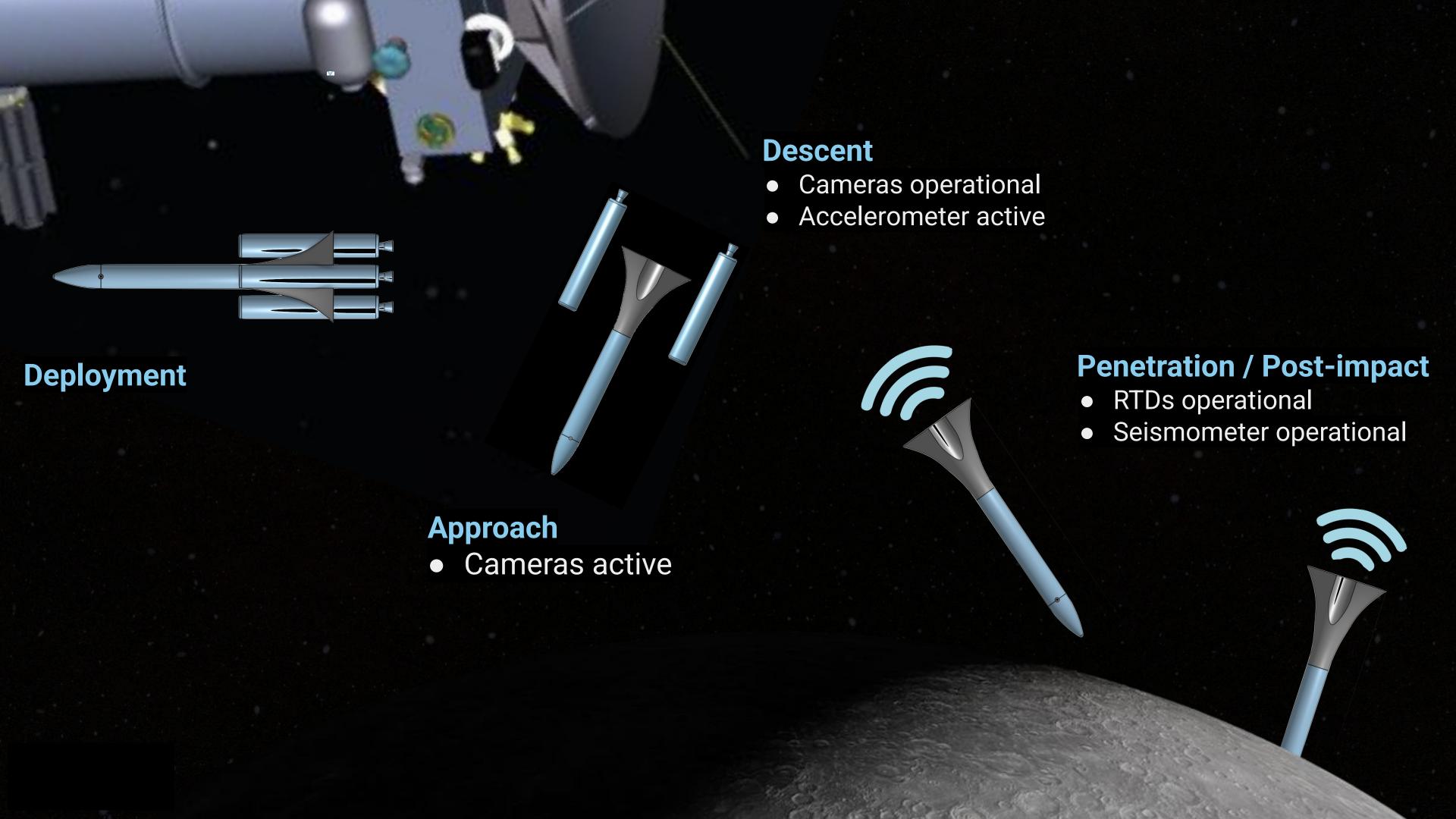
- ADCS pointing / stabilization
- Imagers and accelerometer active
- Image compression / transmission

Penetration: T-0

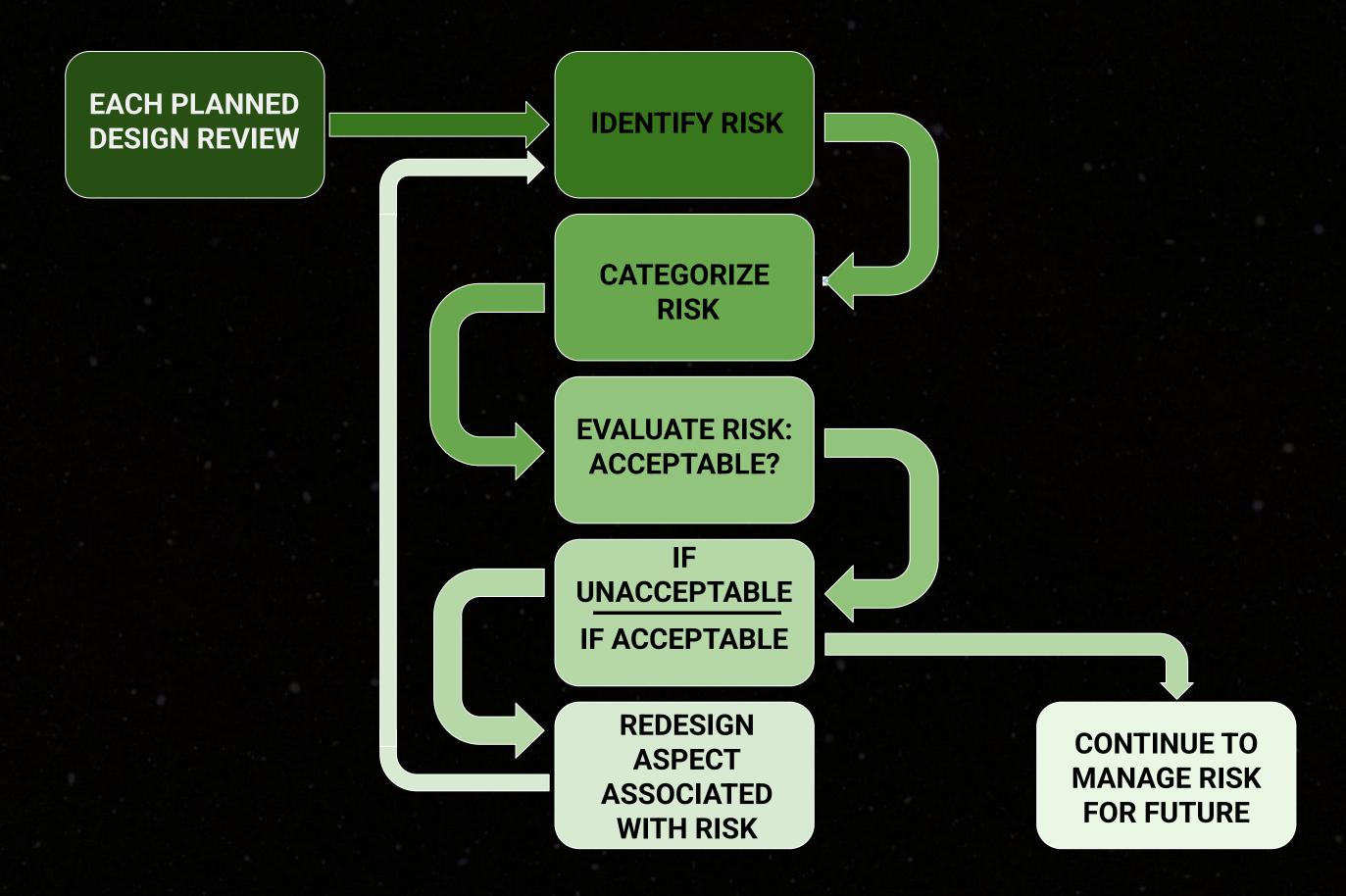
- Thermal probe and seismometer active
- Data compression / transmission

Deployment: T-4.6 hrs

- Umbriel flyby within threshold velocity
- Target location determined


Approach: T-4.4 hrs

- ADCS pointing / stabilization
- ΔV Burn
- SRB jettison / 180 deg slew



Risk

Risk Management Plan

Risk Matrix Key

Low probability of threat occurrence, no to low severity	Members take responsibility with guidance from subteam lead
Possibile to likely occurrence, moderate to high severity	Subteam lead takes responsibility with input from members or chief engineer
Certainty of threat occurrence, catastrophic outcome	Chief engineer takes responsibility with input from subteam lead

SYS	System
ADG	ADCS/GNC
CDH	Command & Data Handling
СОМ	Communications
CST	Cost
POW	Power
PRP	Propulsion
SCI	Science
SHD	Schedule
STR	Structures
THR	Thermal

System Risk Matrix

*56 total risks

		Severity					
		1 Negligible	2 Low	3 Moderate	4 High	5 Catastrophic	
oility	1-5 Very Unlikely	POW02 POW-05	ADG-05 CDH-04	SCI-04 SCI-08 POW-01 POW-04	THR-02 COM-01 ADG-03 POW-03 ADG-04 COM-02 STR-06 STR-05 CDH-03 SCI-05 CDH-06 STR-01 SCI-03 PRP-02 SHD-03	ADG-01 PRP-03 ADG-02 POW-06 CST-04 SYS-02 SCI-01 SCI-09	
bility x Detectability	6-10 Unlikely			THR-03 STR-02 CST-01 THR-05	PRP-05 PRP-04 PRP-06 STR-04 SHD-04 CST-05 CST-06 THR-04	CDH-01 STR-03 SCI-02 CDH-05 SHD-02 SYS-01	
Probabili	11-15 Possible				THR-01	PRP-01 SCI-06 SHD-01	
Prc	16-20 Likely					CST-03	
	21-25 Certain						

System Risk Matrix - Top Risks

*4 risks with highest RPNs

		Severity						
		1 Negligible	2 Low	3 Moderate	4 High	5 Catastrophic		
oility	1-5 Very Unlikely	POW02 POW-05	ADG-05 CDH-04	SCI-04 SCI-08 POW-01 POW-04	THR-02 COM-01 ADG-03 POW-03 ADG-04 COM-02 STR-06 STR-05 CDH-03 SCI-05 CDH-06 STR-01 SCI-03 PRP-02 SHD-03	ADG-01 PRP-03 ADG-02 POW-06 CST-04 SYS-02 SCI-01 SCI-09		
y x Detectability	6-10 Unlikely			THR-03 STR-02 CST-01 THR-05	PRP-05 PRP-04 PRP-06 STR-04 SHD-04 CST-05 CST-06 THR-04	CDH-01 STR-03 SCI-02 CDH-05 SHD-02 SYS-01		
Probability	11-15 Possible				THR-01	PRP-01 SCI-06 SHD-01		
Prc	16-20 Likely					CST-03		
	21-25 Certain							

Top Risks Mitigation Plan

*utilized FMEA from HW5

FMEA Reference #	Part & Failure Mode	RPN Score	Mitigation Plan	Goal RPN
CST-03	Initial cost estimates inaccurate -> budget overruns	80	 Perform detailed cost estimations Build a historical cost model Track high-variance items and assumptions 	45
SHD-01	Vendors fail to provide components on time -> schedule overrun	75	 Initiate early vendor communication Identify potential delays early Make scheduling issues more detectable 	30
SCI-06	Instruments don't turn on -> faulty equipment/connections	60	 Conduct early integration testing Use engineering models (thermal, vibration, electrical) 	30
PRP-01	Impact trajectory compromised -> insufficient delta V	60	 Add margin to SRB delta-V capacity Run higher-fidelity trajectory analysis Refine mass budget to improve delta-V estimates 	30

Goal Risk Matrix

		Severity						
		1 Negligible	2 Low	3 Moderate	4 High	5 Catastrophic		
Probability x Detectability	1-5 Very Unlikely	POW02 POW-05	ADG-05 CDH-04	SCI-04 SCI-08 POW-01 POW-04 PRP-06 SHD-04 THR-03	THR-02 COM-01 ADG-03 POW-03 ADG-04 COM-02 STR-06 STR-05 CDH-03 SCI-05 CDH-06 STR-01 SCI-03 PRP-02 SHD-03	ADG-01 PRP-03 ADG-02 POW-06 CST-04 SYS-02 SCI-01 SCI-02 SCI-09 CDH-05 STR-03		
	6-10 Unlikely			STR-02 CST-01 THR-05	PRP-05 PRP-04 THR-01 STR-04 CST-05 CST-06 THR-04	CDH-01 SHD-01 PRP-01 CST-03 SHD-02 SVS-01 SCI-06		
	11-15 Possible							
Pr	16-20 Likely							
	21-25 Certain							

Budgets

Cost Budget

Maximum Budget: \$55 Million

- Affirmed by mentors
- Derived from SIMPLEx
 - Small Innovative Missions for Planetary Exploration (SIMPLEx) program
 - Supports low-cost, small spacecraft missions

Detailed analysis premature at this stage

- Instrument selection finalized last week
- Structures material selection in progress
- Labor cost analysis currently infeasible due to mission uncertainties

Cost identified as a major risk due to current ambiguity

- Steve agreed based on his experience with similar mission
- Wish we could give you concrete numbers Mojtaba :(

Mass and Volume Budget

Subsystem	Mass [kg]	Allocation %	Volume [cm³]	Allocation %
Payload	9	6%	3,200	4%
Propulsion	40	25%	37,000	52%
Structures	90	58%	25,000	35%
Power	5	3%	4,140	6%
C&DH	2	1%	~150	.2%
TT&C	4	3%	~400	.6%
ADCS	4	3%	1,300	2%
Thermal	5	3%	~500	.7%
Total	159	100%	71,690	100%
Margin	21	12%	348,310	83%

Power Budget

Subsystem	Average Power [W]	Allocation %
Payload	3	9%
Propulsion	1	3%
Structures	0	0%
Power	1	3%
C&DH	2	5%
TT&C	7	19%
ADCS	2	5%
Thermal	21	57%
Total	37	100%

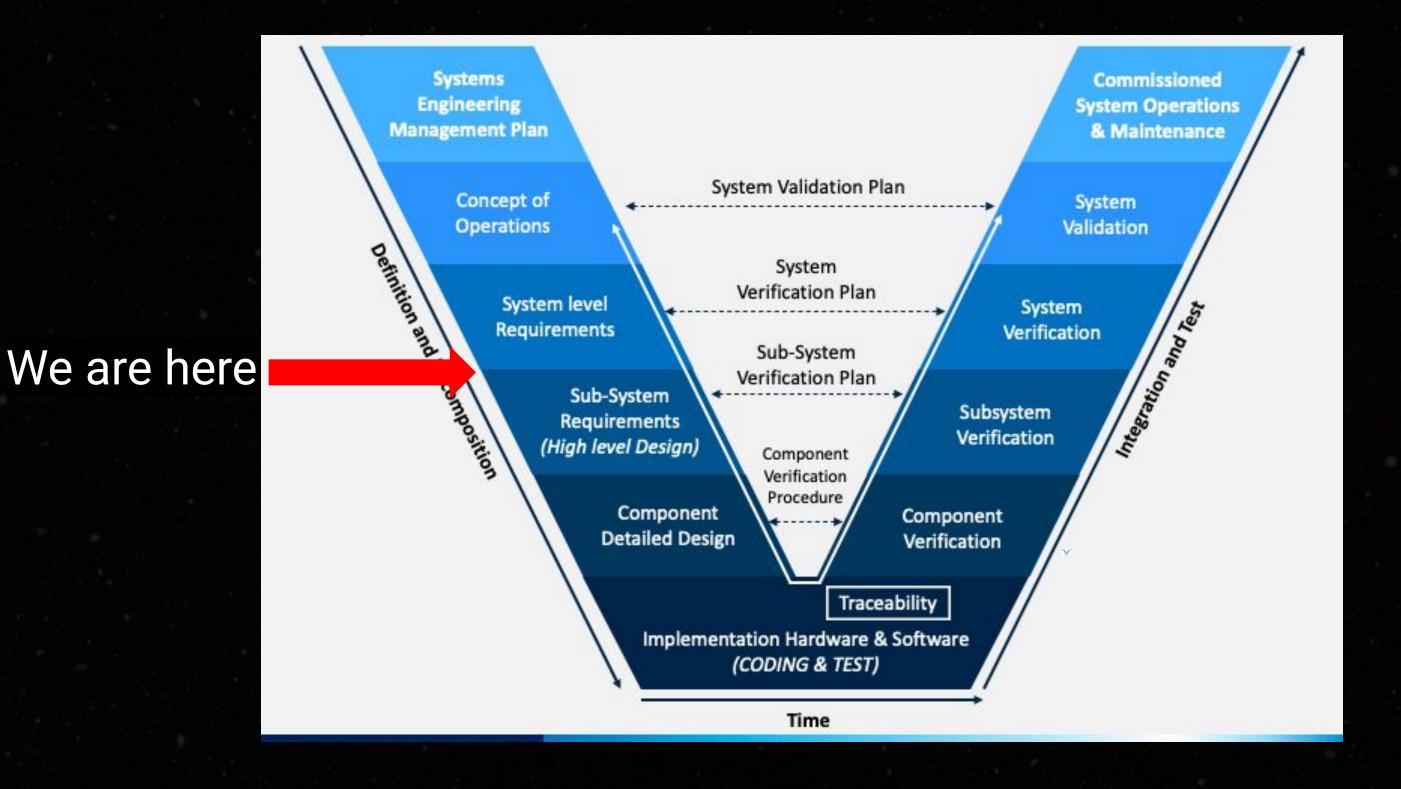
Link Budget - Worst Case

Item	Value	Units
Transmitter Power	5	W
Transmitter Diameter	0.107	m
Propagation Path Length	5338	km
Data Rate	1.3	kbps
Bandwidth	20	MHz
Carrier-to-Noise	62.2	dB
Link Margin	12.6	dB
Received Power	-122	dBm
Power Margin (>-137dBm)	24	dB
Exceeds Shannon Limit?	No	

Link Budget - Realistic Case

Item	Value	Units
Transmitter Power	5	W
Transmitter Diameter	0.107	m
Propagation Path Length	5338	km
Data Rate	9.41 (2Mbps in transit)	kbps
Bandwidth	20	MHz
Carrier-to-Noise	73.6	dB
Link Margin	24	dB
Received Power	-104	dBm
Power Margin (>-137dBm)	32.7	dB
Exceeds Shannon Limit?	No	

Schedule



Schedule

WBS #	TASK TITLE	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr +
1	Determine customer needs								
· '/	Literature review and develop STMs								
	Develop mission concept and alts								
4	Feasibility Study								
5	Concept Selection								
6	System-level Reqs.								
7	Concept Decision								
\square	Concept Development								
	Subsystem-level Req. Flowdown								
10	In-depth Subsystem								
	Design & Analysis								
11	Final Documentation								
12	Scientific Paper								

Systems Engineering V

Future Work

- Detailed CAD of the spacecraft
 - Stress calculations to determine flare, main body, and nose cone interfaces
 - Component placement optimization
- Determine flare and main body material
- Perform shock analysis
- Design general impactor/penetrator payload architecture with UOP design as case study
- Write conference paper

Conclusion

Goal: Design secondary mission to enhance science return of UOP flagship

Accomplished:

- Developed a penetrator concept
- Determined science and instruments to obtain unique data
 - Closeup images of surface
 - Surface hardness
 - Thermal properties
 - Seismic data post impact
- Conducted many analyses to determine survivability
- Finalised mission concept that would enhance science return of UOP

Thank You Questions?

Backup Slides

Useful Links

- WBS
- Critical Path
- Concept Selection Trade Study
- IMS
- Requirements
- STM

STM/Science Backup Slides

Ex: Recommendations -> Functional Requirements

Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q5.1c How Does the Presence of Porosity, Ices, Liquids, or Gases Affect the Physical (e.g., Mechanical, Thermal, Electromagnetic) Properties of the Crust? Q12.8a What Can Observations of Circumplanetary Material Reveal About the Formation and Evolution of Circumplanetary Systems?	Determine chemical composition of the moon's surface.	Quantify key chemical elements and minerals in the satellite's impact plume (Expected Species: H2O, CO2, CH4, N2, Carbonaceous Chondrites).	Vis Spectroscopy (remote sensing, between 1.4 - 3 um) Imaging of impact flash	Vis/NIR Imaging Spectrometer & WAC (Lucy L'Ralph)	The spacecraft shall maintain line of sight with the orbiter during its impact.
	Measure impact site physical properties on the large moon.	Determine surface hardness of the Uranian moons	Crater size at impact site of penetrators and impactors	(Note - This will be on main orbiter)	The spacecraft shall create a crater with radius 3-15 meters for the flagship mission to image
Q4.4b What Materials Ejected from Impact Craters Are Deposited on Planetary Surfaces?	Observe the trajectories of ejecta from ice moon impacts	Observe the impact on the moon's surface Calculate ejecta percentages: surface return, escape, or orbit.	Surface imagery		 The spacecraft shall impact the moon within line of sight of the orbiter The spacecraft shall impact the target moon only during flybys where the orbiter's altitude is less than 500 km

Down-View Multi-Spectral & Side-View Imager

Decadal Questions:

- Q5.1c How Does Porosity, Ices, Liquids, or Gases Affect the Physical Properties of the Crust?
- Q12.8a What Can Observations of Material Reveal About Formation of Circumplanetary Systems?

Goal: Collect surface images

Objective: Determine spectral composition & topography of surface

Measurement: Observation of surface during descent, nadir- & azimuth -facing

Nominal Instruments:

- 1. Down-view multi-spectral imager Red, green, blue, monochrome (based on Osiris Rex Heritage)
 - a. Resolution: [TBR] GSD at [TBR] km altitude
 - b. Swath: [TBR] km
- 2. Side-view imager Red, green, blue, monochrome

Functional Requirement:

- 1. Down-/side-view imager shall capture surface images every [TBR] seconds
- 2. Spacecraft shall shield imager from environment & vibrations on descent

System

ADCS Design

- Disturbance torques: Solar radiation, atmospheric drag, and magnetic field can be neglected because
 - o solar radiation is TINY bc sun far
 - o none of the moons have an atmosphere and the COP will be behind of the COM
 - The moons do not have a magnetic field and is far enough away from Uranus where its magnetic field should have very minimal to no effect on the spacecraft
 - Gravity gradient will have the largest effect due to Uranus perturbations
 - 5.79394*10^15 m^3/s^2
 - R= closest approach of moon to Uranus: Miranda @130000km
 - Theta= Local Vertical and principle Z axis
- Minimum Slew Rate: Greatest torque on the spacecraft will be from SRB ejection. Sizing in the case of ejection mishaps:
- Equations: $T_g = \frac{3\mu}{2R^3} |I_z I_y| \sin(2\theta)$
- Trade study control and determination system: reaction control winner!
- Sensors:
 - 2 Star Trackers
 - 1 on each side of S/C

Vis/NIR Imaging Spectrometer & WAC (Lucy L'Ralph)

Decadal Questions:

- Q5.1c How Does the Presence of Porosity, Ices, Liquids, or Gases Affect the Physical (e.g., Mechanical, Thermal, Electromagnetic) Properties of the Crust?
- Q4.4b What Materials Ejected from Impact Craters Are Deposited on Planetary Surfaces?

Goals:

- Determine moon surface chemical composition
- Measure physical properties of impact site
- Observe distribution of ejecta from ice moon impacts on subsequent flybys

Objective:

- Quantify key chemical elements & minerals in satellite's impact plume
 - Species: H2O, CO2, CH4, NH3, Carbonaceous Chondrites
- Determine surface hardness of Uranian moons
- Observe impact on moon's surface
- Calculate ejecta percentages:
 - o surface return, escape, or orbit

Measurement: Imagery & spectrography (res: 250 urad/px - between 1.4 - 3 um)

Nominal Instrument: Orbiter Vis/NIR Spectrometer and WAC

Functional Requirements:

1. Spacecraft shall impact the target moon within line of sight of the orbiter

Uniaxial Impact Accelerometer

Decadal Question:

 Q5.1c How Does the Presence of Porosity, Ices, Liquids, or Gases Affect the Physical (e.g., Mechanical, Thermal, Electromagnetic) Properties of the Crust?

Goal: Determine the physical properties of the large moon's surface at the point of impact Objective: Determine the surface hardness of the target Uranian moon Measurement: Deceleration profile during impact

Nominal Instrument: Uniaxial Impact Accelerometer

Functional Requirement:

1. Uniaxial Impact Accelerometer shall record data at [TBR] readings/sec to detect the exact moment of impact and the subsequent deceleration profile

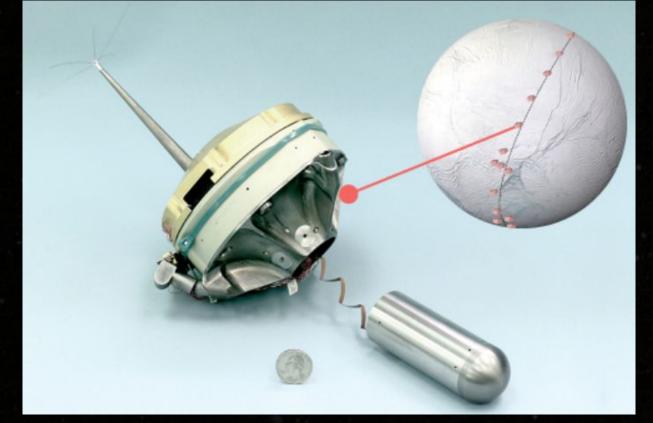
MEMS Seismometer

Decadal Question:

 Q5.1a How Much Variability in Composition and Internal Structure Is There Within and Between Solid Bodies, and How Did Such Variability Arise and Evolve?

Goal: Probe the interior of the target Uranian satellite Objectives:

- Determine the interior composition and structure of the Uranian satellite
- Determine the thickness of the ice sheet of target Uranian moon


Measurement:

- Seismic activity after impact within XX sensitivity
- Coda of Body waves, harmonic frequency (XX) of Crary wave

Nominal Instrument: MEMS Seismometer

Functional Requirements:

- 1. MEMS Seismometer shall survive expected impact forces
- 2. MEMS Seismometer shall have [TBR] signal to noise ratio

JPL Microdevices Laboratory: High Shock Resistant Seismometer for Penetrator Concepts

Germanium RTDs

Decadal Questions:

- Q8.2f How Are Heat and Material Transported Through—and Ultimately Out of—Satellite Interiors?
- Q5.1a How Much Variability in Composition and Internal Structure Is There Within and Between Solid Bodies, and How Did Such Variability Arise and Evolve?

Goal: Determine the thermal properties of the moon's surface

Objective: Infer thermal conductivity and heat dissipation rates across the surface of the moon

Measurements:

- 1. Measure post-impact temperature decay in regolith
- 2. Compare temperature profiles at different depths (2) within the impactor

Nominal Instrument: Germanium RTDs

Functional Requirements:

- 1. RTD shall survive expected impact forces
- 2. RTD shall remain operational in low temperatures
- 3. RTD shall take high-frequency temperature readings post-impact
- 4. RTD shall delve at least X meters into the surface of the satellite

Concept Selection

Explored Concepts

One Penetrator

 Survive impact to one moon; displace regolith, form crater for flagship to image, and record data on the surface

Multiple Impactors

 Impact multiple moons; displace regolith and form craters and for flagship to image

Penetrator + Impactors

 Penetrator survives impact to one moon and records data on the surface; on future flybys, drop impactors and collect seismic data from collisions

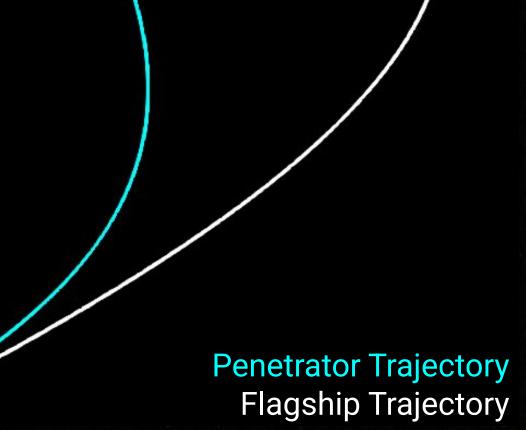
Orbiter

 Use secondary orbiter to collect additional, higher resolution science data on moons or rings

Explored Concepts Trade Study

- Conducted trade study to assess mission concept
- Selected: 1 penetrator, highest valued concept

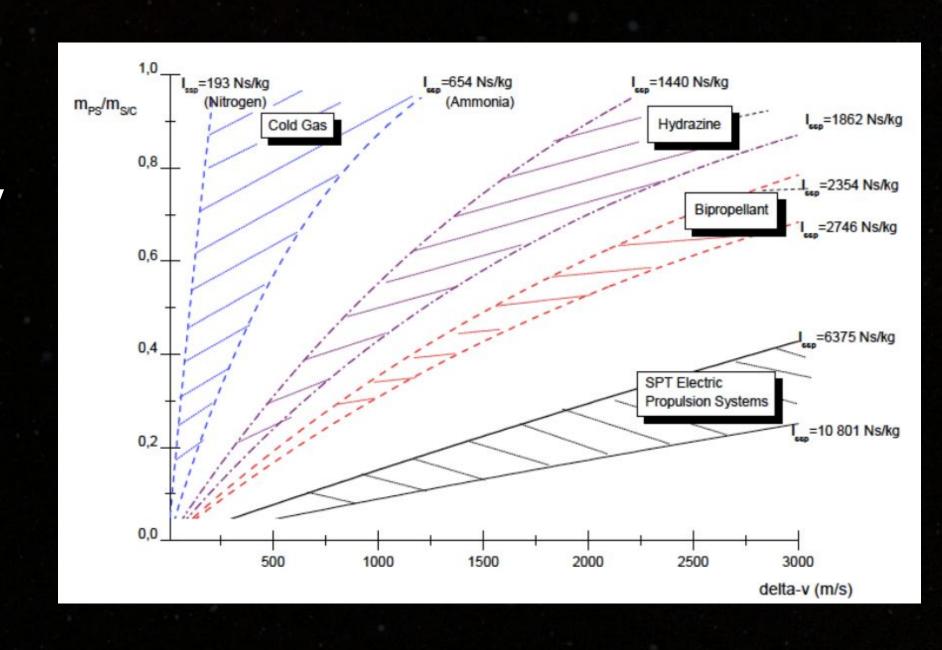
	Criteria					Conc	epts			
	Criteria		1 Pen	etrator	Penetrator	+ Impactors	Multiple I	mpactors	Orb	iter
S	Shall have a maximum mass allocation of 18	0 kg	Y	es	Y	es	Y	es	Yes	
ave	Shall have a maximum volume allocation of 1.	19 m³	Y	es	Y	es	Y	es	Yes	
H H	Provide novel science return to flagship mis	sion	Y	es	Y	es	Y	es	Ye	es
Must Haves	Does not exceed maximum power draw from or transit	biter in	Y	es	Y	es	Y	es	Yes	
		Weight	Value	Score	Value	Score	Value	Score	Value	Score
	Amount of science objectives achieved	10	0.9	9	1	10	0.2	2	0.5	5
	Technical Complexity	9	0.5	4.5	0.3	2.7	0.8	7.2	0.7	6.3
	Operational Complexity	8	0.6	4.8	0.4	3.2	0.7	5.6	0.4	3.2
ts	Influence on orbiter	7	0.75	5.25	0.5	3.5	0.2	1.4	0.25	1.75
Wants	Lifetime to provide science	6	0.3	1.8	0.2	1.2	0.9	5.4	0.6	3.6
>	Opportunities to transmit data	5	0.15	0.75	0.1	0.5	0.1	0.5	0.3	1.5
	Previous Heritage Missions	4	0.75	3	0.25	1	1	4	0.5	2
	Number of possible targets	3	0.2	0.6	0.2	0.6	0.8	2.4	0.6	1.8
	Survival potential through all mission phases	0.7	1.4	0.7	1.4	1	2	1	2	
	Total Score		3	31.1		24.1).5	27.15	


Note: Nominal values shown in table, <u>Detailed Version</u>

Trajectory Analysis

Trajectory Analysis Overview

- Approximate flagship trajectory around target moons
 - Flyby altitude and velocity.
 - Gravity from moon and Uranus
- Selecting Fly-bys
 - Lower fly-by velocity => lower impact velocity
- Inputs
 - Time before closest approach =>Deployment location
 - Velocity at deployment => delta V
- Outputs
 - Impact velocity and angle
 - Flight duration


Propulsion Backup

Propulsion Overview

A trade study was done on what the best propulsion method would be. Solid Rocket propellant (SRBs) would be the best for this mission as they are:

- Inert
- Easy to start
- Will not leak propellant
- Low cost/mass/volume
- Weight can be shed for lower impact energy
- Low battery power requirement
- High thrust

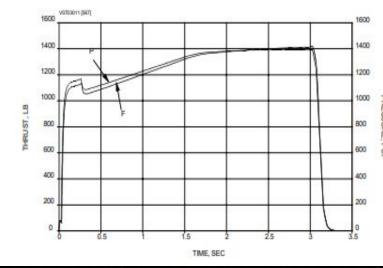
Propulsion Overview

Star 5D DeltaV calculation and initial constraints:

- 100kg total impactor mass w/o SRBs
- 10.23kg loaded/3.32kg empty
- ISP: 256 seconds
- g: 9.8066m/s^2

1 motor: ΔV=256*9.8066*In(110.23/103.32)=162.52m/s

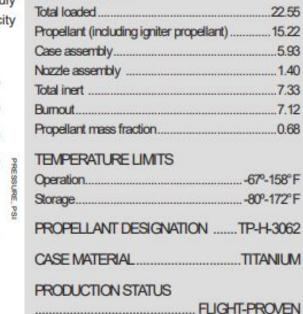
2 motors: $\Delta V = 305.93$ m/s


3 motors: $\Delta V = 433.59$ m/s

4 motors: $\Delta V = 548.11$ m/s

ADCS thrust vectoring can be used to meet ΔV requirements for the intended trajectory.

The STAR 5D rocket motor was designed and qualified (1996) to serve as the rocket-assisted deceleration motor on the Mars Pathfinder mission for the Jet Propulsion Laboratory (JPL) in Pasadena, CA. The STAR 5D features a titanium case, headend ignition system, and canted nozzle design and is based on earlier STAR 5 designs. Three of these motors were fired on July 4, 1997, to slow the Pathfinder spacecraft to near-zero velocity before bouncing on the surface of Mars.

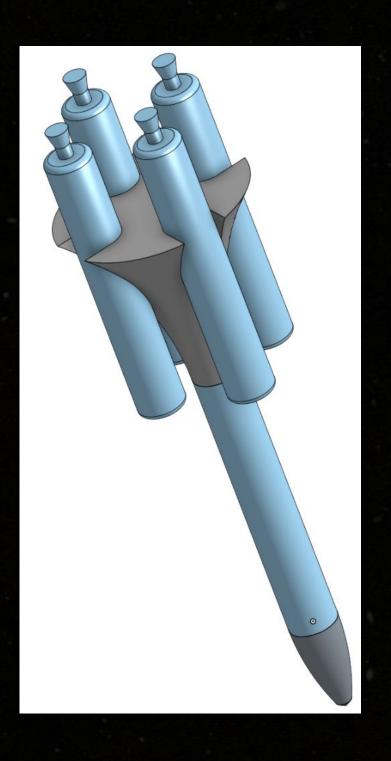

Motor diameter, in	4.8
Motor length, in	32
MOTOR PERFORMANCE (-22°F	VACUUM)
Burn time/action time, sec	3.03/3.2
Ignition delay time, sec	0.02
Burn time average chamber pressure,	psia1,29
Maximum chamber pressure, psia	1,40
Total impulse, lbf-sec	3,95
Propellant specific impulse, lbf-sec/lbr	n259.
Effective specific impulse, lbf-sec/lbm	256.0
Burn time average thrust, lbf	125
Maximum thrust, lbf	1,41
NOZZLE	

Initial throat diameter, in

Expansion ratio, initial.

WEIGHTS, LBM

Exit diameter, in.


$$\Delta v = (v_e := I_{sp} * g_0) * \ln \left(rac{m_0}{m_f}
ight)$$

SRB Mounting/Ejection

To minimize risk/potential damage to the spacecraft and ADCS fatigue/saturation

- SRBs will be mounted with the nozzles facing aft
 - Avoids the hot gasses from interfering with the main body/tip
- Staggered SRB jettison to induce a 180° rotation without ADCS
 - Allows for the tip to point in the direction of travel post SRB shutdown
 - Spring loaded ejection with burn wire trip mechanism
 - Spacecraft flip slew rate to not exceed 20°/sec (~10 seconds)

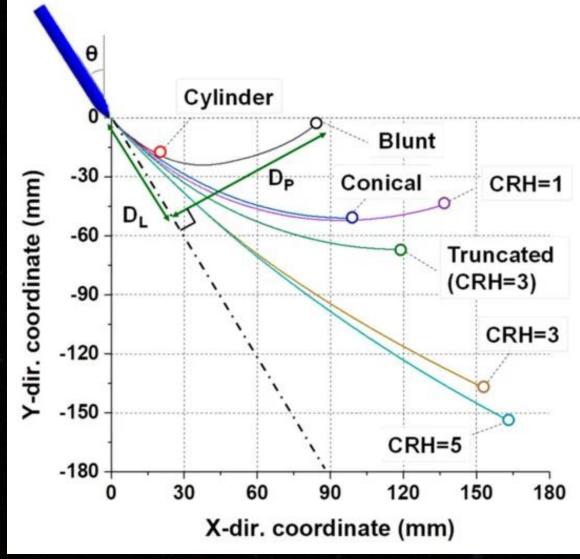
Structures Backup

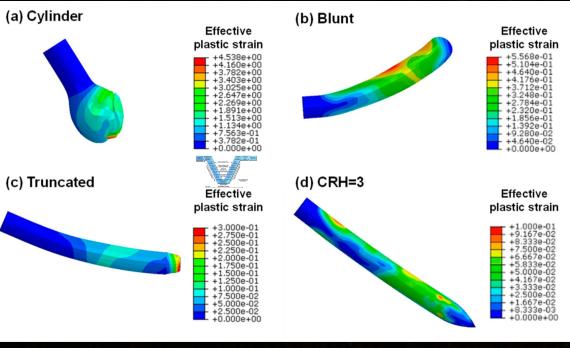

Nose Cone Trade Study Overview

Criteria	Penetration capability, deflection angle, yaw resistance, tip strength
Relevant Requirement	STRUCT_1: The structure shall contain and protect all components during the launch, transit and deployment phases

Winner: Rounded-Tip Ogive

Option 1: Sharp ogive




Option 2: Hemispherical

Option 3: Rounded tip ogive

Alternatives

*Above images taken from literature review sources, not our own calculations.

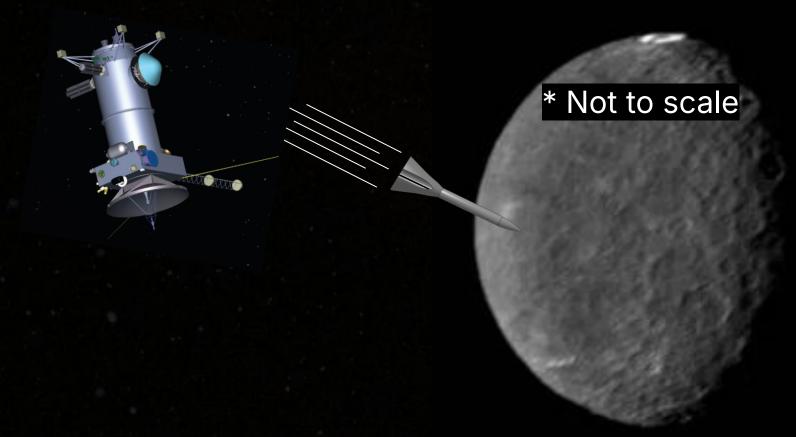
Impact Force Calculations

Criteria	Similarities to expected environment, agreement with other models, quality and number of assumptions used.
Relevant Requirement	STRUCT_1: Contain and protect all components during the launch, transit and deployment phases.

Models Used

- 1. Hypervelocity Impacts on Low-temperature ice Late Stage Effective Energy
- 2. Tate-Alekseevski model Rigid-Body Penetration
- 3. Spherical Cavity-Expansion Approximation Ogival Nose Rod

Main Assumptions


- Homogenous, solid penetrator impacting solid water ice
- Standard constants / coefficients for Ti-6AI-4V grade Titanium.
- Experimentally determined values for glacier ice.

Important Dependencies

- Impact velocity
- Geometry / mass of the projectile
- Material properties of the target / projectile

Expected force upon impact: 12.258 - 18.325 MN

Expected penetration depth: 2.709 - 3.555 m

Design Next Steps

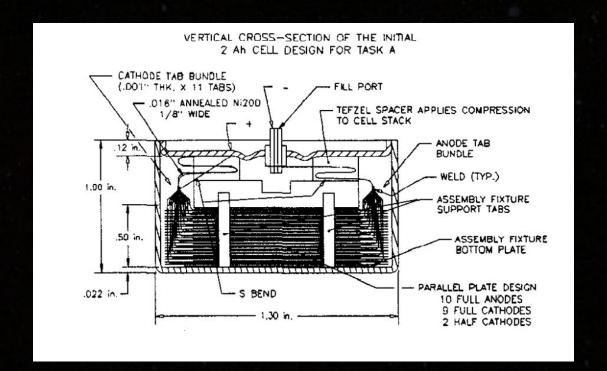
- Import the CAD of all instruments to know internal mass/volume allocation per bay
 - Given total impact force estimation, calculate the stress on each section to find best method of attachment (brackets/welding/rivet/fasteners)
 - Optimal locations for each component
 - Nose cone/body/flare mounting method
- Finalize material selection trade study for each part
- Finish the design of the SRB ejection
 - Spring load calculations
 - Lateral force requirement and induced stress
- Analyze shock environment given the impact forces

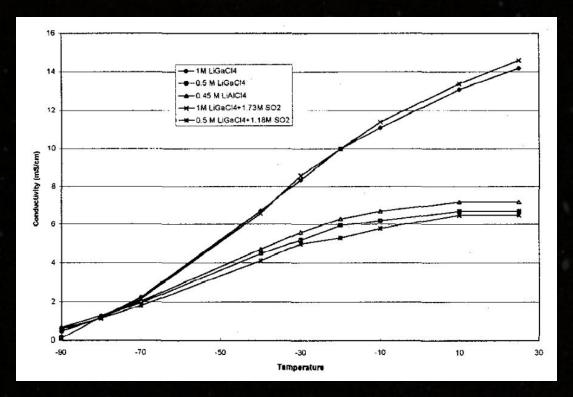
Power Backup

Primary Cell Trade Study 1

		Consumer Grade LiFePO4			Defense-Grade Thermal Battery			Deep Space 2 LTC Battery			Traditional LiSOCL2 Battery			Nickel-Hydrogen Battery		
Wants	WT	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score
-		LiFePO4 batteries have some of the	0.7	0.175	Thermal batteries allow very high	0.95	0.2375	Moderate density, designed for impact	0.6	0.15	optimized for compact deep-space storage	0.85	0.2125	Low density, limited by gas containment volume	0.1	0.025
Volumetric Energy		highest energy densities of rechargable cells	0.75	0.1875	energy density due to rapid chemical reactions	0.98	0.245	survival and low-temperature	0.65	0.1625		0.9	0.225		0.15	0.0375
Density	0.25	recliargable cells	0.8	0.2	reactions	1	0.25	operation	0.7	0.175		0.95	0.2375		0.2	0.05
		LFP specific energy suffers from the	0.45	0.1125		0.6	0.15		0.9	0.225	Very high specific	0.85	0.2125	Low specific energy, bulky gas-based system	0.2	0.05
Specific Energy	0.25	electrode weight and density, although is	0.5	0.125	High specific energy, short-duration power	0.65	0.1625	High specific energy	0.95	0.2375	energy, mass-efficient for	0.9	0.225		0.25	0.0625
(gravimetric density)		still high	0.55	0.1375		0.7	0.175		1	0.25	long missions	0.95	0.2375		0.3	0.075
		Very available, used	0.95	0.095	Relatively common	0.8	0.08	Custom cell, used only for one mission	0.1	0.01	Widely available from aerospace and	0.85	0.085	Widely considered	0.2	0.02
		in automotive, aerospace, medical,	0.98	0.098	from suppliers in defense industry, in active production	0.85	0.085	and related testing. Remanufacture is a possibility	0.15	0.015	industrial suppliers, used in space,	0.875	0.0875	government	0.25	0.025
Availability	0.1	consumer	1	0.1	active production	0.9	0.09		0.2	0.02	oil/gas, remote sensing, medical	0.9	0.09	clients	0.3	0.03
		Off-the shelf components can survive 1000-5000g depending on model,	0.1	0.1	Depending on design can handle	0.95	0.95	Specifically designed to tolerate 80,000g+	0.99	0.99	20,000g depending	0.3	0.3	Contains high-pressure	0.15	0.15
			0.15	0.15		0.975	0.975		0.995	0.995		0.35	0.35		0.2	0.2
Impact Tolerance	1	but can be ruggedized	0.2	0.2		1	1		1	1	ruggedization	0.4	0.4	catastrophic in event of failure	0.25	0.25
-		LFP cells are some	0.9	0.675	Can provide high	0.1	0.075	Moderate current	0.6	0.45	draw over long periods, burst power for heater/TX/RX may be an issue	0.4	0.3	Excellent stability	0.85	0.6375
-5		of the most tolerant of extreme constant	0.95	0.7125	long, sustained	0.15	0.1125	capability, designed	0.65	0.4875		0.45	0.3375		0.9	0.675
Constant and Burst Current Capability	0.75	current	1	0.75	periods	0.2	0.15	longer time periods	0.7	0.525		0.5	0.375	burst power	0.95	0.7125
		Thermal runaway is	0.8	0.4	Very stable;	0.6	0.3	Extremely stable	0.5	0.25	Highly corrosive and unstable if	0.4	0.2	High pressure H2	0	0
		almost impossible, low/moderate risk of	0.85	0.425	non-reactive until	0.65	0.325	under normal operation, small risk		0.3	containment is	0.5	0.25	gas can cause catastrophic	0.025	0.0125
Safety Risk	0.5	hazardous electrolye contamination if breached		0.45	high heat levels if accidentally triggered	0.7	0.35	of thermal runaway if punctured, moderate chemical hazard		0.35	risk of thermal runaway, increased local hotspots	0.6	0.3	unplanned disassembly in event of breach	0.05	0.025

Primary Cell Trade Study 2


		Consumer Grade LiFePO4			Defense-Grade Thermal Battery			Deep Space 2 LTC Battery			Traditional LiSO	CL2 Ba	ttery	Nickel-Hydrogen Battery			
		Potentially 90% charge loss, but	0.1	0.09	Ideal for long	0.95	0.855	Ultra-low self-discharge,	0.9	0.81	Excellent long-term storage, proven in	0.85	0.765	Louisiated do 70 1000	0.2	0.18	
Long-term Stability		could be kept 'topped off' by orbiter during	0.15	0.135	storage, inert with no capacity loss until activated	0.975	0.8775	designed to survive multi-year	0.95	0.855	space, depending on design less specialized than DS2	0.875	0.7875	over 10 years, would require orbiter battery tender	0.25	0.225	
/ Self Discharge Rate (10 years)	0.9	journey	0.2	0.18	activated	1	0.9	deep-space missions.	1	0.9	LTC LTC	0.9	0.81		0.3	0.27	
		Large initial drop from maximum voltage, moderate 'knee' on discharge curve with sharp drop <20%	0.3	0.27	Moderately stable	0.2	0.18	Moderate initial drop,		0	Very stable nominal voltage throughout	0.75	0.675	Voltage highly	0.15	0.135	
	0.9		0.35	0.315	initial voltage, rapid drop-off as heat	0.25	20-0-000	almost constant nominal voltage until		0	discharge range, with a predictable dropoff	0.775	0.6975	dependent on load, stable voltage with stable load	0.2	0.18	
Nominal Voltage Stability			0.4	0.36	dissipates	0.3	0.27	<5% capacity		0	<5%	0.8	0.72		0.25	0.225	
		Highly configurable	0.8	0.6	Generally custom	0.2	0.15	875 designed to be stable, ideally in multiple groups of 4 cells	0.9	0.675	and scalable, available in common standards and custom sizes	0.9	0.675	Configuration highly constained by	0.35	0.2625	
		due to wide availability in multiple	0.9	0.675	sized, not easily scaled or	0.25	0.1875		0.925	0.69375		0.95	0.7125	pressure	0.4	0.3	
Scalability / Configurability	0.75	form factors	1	0.75	reconfigured	0.3	0.225		0.95			1	0.75	systems, but is configurable	0.45	0.3375	
		Minimum		2.5175			2.9775		303	3.56	-		3.425		\$ 1.	1.46	
Total Score		Nominal 2.82		2.823	3		3.195	ž	3.7		25		3.6725			1.7171	
				3.1275			3.41			3.9325			3.92			1.975	


FINAL DECISION:

Primary Cell Trade Study Overview

- Comparison between consumer, defense, and custom-designed components
- Thermal batteries provide high power, but with drawbacks
 - Capacity
 - Heat Generation
- Traditional LTC and consumer-grade LiPo cannot handle impact conditions
- Solution: Custom designed cells from Deep Space 2 Probes
 - Tolerant of 80,000g impact
 - Sufficient capacity to power scientific instruments

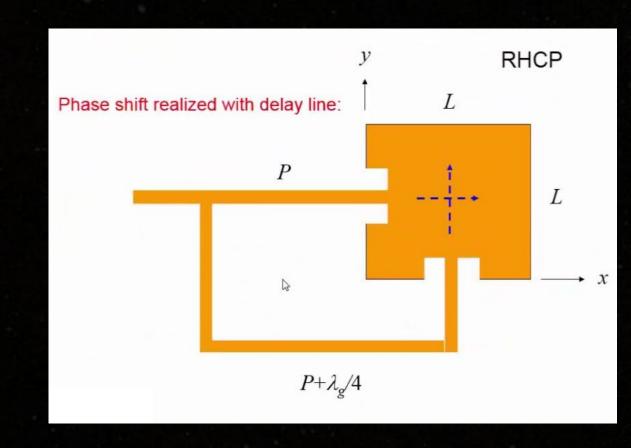
CDH Backup

C&DH

- Microcontroller selection: BAE Systems RAD750
 - Radiation Hardened version of PowerPC750
 - Robust, but expensive
- If a lower, 30krad max dose can be justified:
 - Microchip ATmegaS128
 - 8-bit microcontroller, rad hardened version of μC line commonly used in Arduino
- Total data storage
 - 50GB

TT&C Backup

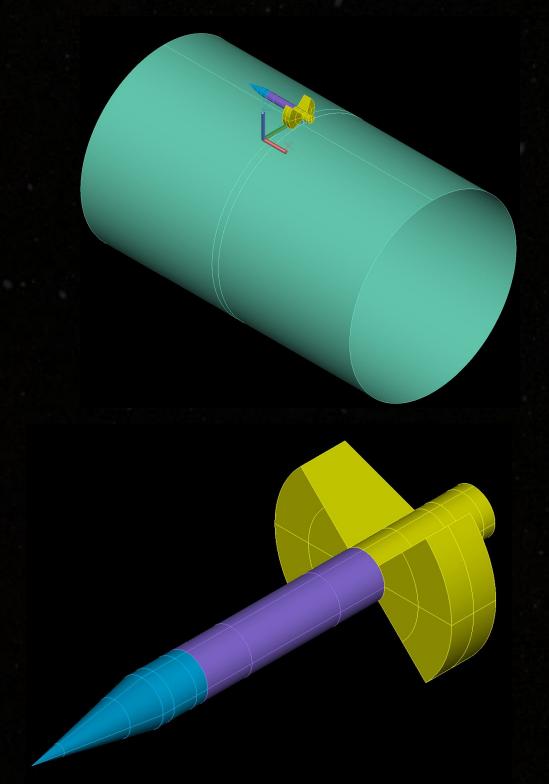
TT&C Worst Case Link


Item	Symbol	Units	Value	Source	Explanation
Frequency	f	GHz	2	Input Parameter	Refer to Frequency Selection table in Communication_Systems_Sep_25-27 lecture
Transmitter Power (DC)	Р	W	5	Input Parameter	Assume antenna power = 25% of total bus power
Transmitter Power Amplifier Efficiency	hp	-	0.6	Input Parameter	Assume TWTA
Transmitter Power (RF)	Р	W	5	R*hp	
Transmitter Power (RF)	Р	dbW	6.99	10*log(P)	
Transmitter Line Loss	LI	dB	0.2	Input Parameter	Assume based on Table 16-13 from New SMAD
Transmit Antenna Beamwidth	θt	deg	95.4545454	Input Parameter	New equation provided in Slack ; theta = 21/(f/c)*D
Transmit Antenna Efficiency	ht	-	0.7	Input Parameter	
Peak Transmit Antenna Gain	Gpt	dBi	5.70	Eq. 16-10 from New SMAD	
Transmit Antenna Diameter	Dt	m	0.11	Input Parameter	
Transmit Antenna Pointing Error	et	deg	10	Input Parameter	

Item	Symbol	Units	Value	Source	Explanation
Frequency	f	GHz	2	Input Parameter	Refer to Frequency Selection table in Communication_Systems_Sep_25-27 lecture
Transmitter Power (DC)	Р	W	5	Input Parameter	Assume antenna power = 25% of total bus power
Transmitter Power Amplifier Efficiency	hp	-	0.6	Input Parameter	Assume TWTA
Transmitter Power (RF)	Р	W	5	R*hp	
Transmitter Power (RF)	Р	dbW	6.99	10*log(P)	
Transmitter Line Loss	LI	dB	0.2	Input Parameter	Assume based on Table 16-13 from New SMAD
Transmit Antenna Beamwidth	θt	deg	95.45454545	Input Parameter	New equation provided in Slack ; theta = 21/(f/c)*D
Transmit Antenna Efficiency	ht	-	0.7	Input Parameter	
Peak Transmit Antenna Gain	Gpt	dBi	5.70	Eq. 16-10 from New SMAD	
Transmit Antenna Diameter	Dt	m	0.11	Input Parameter	
Transmit Antenna Pointing Error	et	deg	5	Input Parameter	
Transmit Antenna Pointing Loss	Lpt	dB	0.033	Communication_Systems_Sep_25-27 lecture (slide 46)	
Transmit Antenna Gain (net)	Gt	dBi	5.67	Gpt + Lpt (Sample_Link_Budget)	Gain after considering pointing loss
Equiv. Isotropic Radiated Power	EIRP	dBW	12.66	Equation 16-20 from New SMAD	

TT&C

- Antenna Design: Patch w/ integrated polarization
 - No moving/deployable parts necessary
 - 6dBi Gain
- Optimal Frequency: 2GHz (low-S-band)
 - 15cm wavelength takes advantage of maximal exposed rear-facing surface area
 - Avoids degradation due to water molecule resonance by staying below 2.45GHz
- Link budget allows for ~133dBm received power on orbiter, enough for 2.14mbps data rate



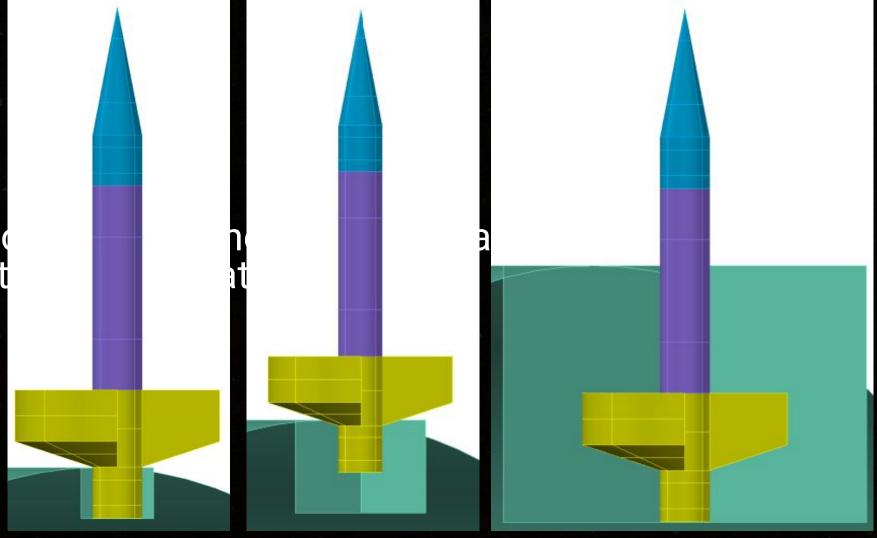
Thermal Backup

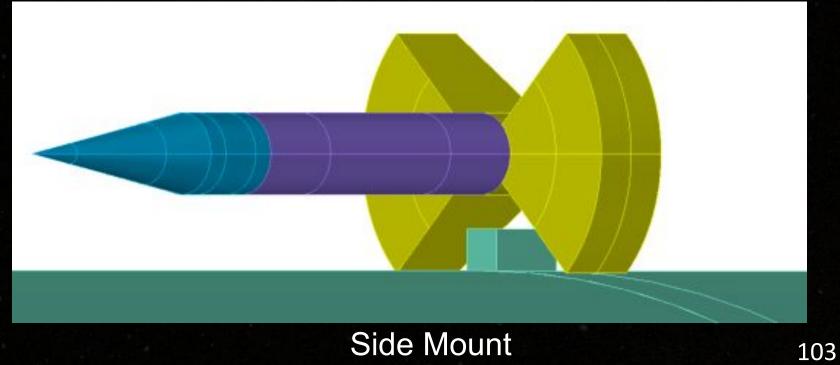
70-Node Thermal Analysis (1/2)

- Investigated multiple cases to determine:
 - A possible and realistic thermal control system
 - Passive: Insulation, coatings
 - Active: heaters
 - Survival heater power when attached to orbiter
 - Associated with customer need of staying below 2W of power draw during transit
 - Heat transfer to/from orbiter
- Updated thermal model reflect penetrator mission concept
 - 70 nodes, 103 objects
 - Structural panels
 - Battery component
- Following cases rans:
 - Cold
 - Cold Uranian orbit with and without the orbiter
 - Hot
 - Hot Uranian orbit with and without the orbiter
 - Jovian grav. assist flyby

Environment	Solar (W/m²)	Albedo	IR Planetshine (W/m²)		
Uranus Cold	3.7	0.9	0.50		
Uranus Hot	3.7	0.9	0.76		
Jupiter Hot	50.1	0.343	14.1		

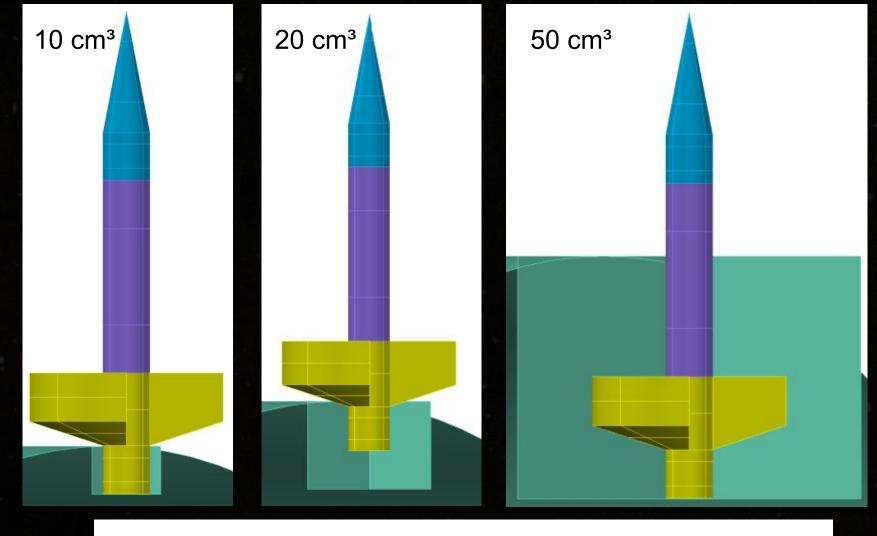
70-Node Thermal Analysis (2/2)

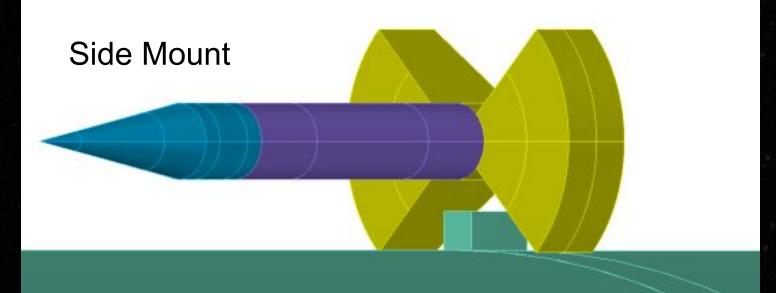

- When attached to the orbiter, survival heaters may not be required
 - Minimum orbiter temperature that allows for no heater power in -38.9°C
- Accounting for environmental heating and conduction paths in model, battery heater power required drops <1 W
 - Excellent for overall lifetime
- Battery survival heater size will be ~1W (0.64*1.5)


Case	Min. Battery Temperature (° C)	Max. Battery Temperature (° C)	Battery Heater Power (W)		
Cold Uranian Orbit, w/ Orbiter (-20°C)	-20.2	-20.16	0		
Cold Uranian Orbit, w/o Orbiter	-39.0	-39.0	0.64		
Hot Uranian Orbit, w/ Orbiter (-20°C)	-20.2	-20.14	0		
Hot Uranian Orbit, w/o Orbiter	-39.0	-39.0	0.64		
Jovian Grav. Assist Flyby, Orbiter (25°C)	24.7	24.9	0		

Mounting Comparison

- To obtain data on the impact to heat to/from the study was conducted to compare possible mount
- 5 Models
 - Base orbiter
 - 10cm³ inset
 - 20cm³ inset
 - 50cm³ inset
 - Side Mount
- Orbiter modeled as a 1.3 m radius, 4.2 m long cylinder cm³
 - Set to a boundary temperature
 - Emissivity = 0.035 (e of Al MLI)
- Penetrator based on rough estimate
 - Emissivity = 0.035 (e of Al MLI)
 - Has representative battery object
 - Has heater on battery object
 - No thermal isolation of the batteries
 - Assumed max length of 1 m


20 cm³



50 cm³

Mounting Comparison

- 4 different mounting options were selected
- Trade study performed by looking at its different impacts on the main orbiter and feasibility
- The results of a thermal mode can be seen below
- The side mounting has the least impact on the orbiters and is therefore chosen as the mounting configuration

Output	Battery Heat	er Steady Stat	te Power (W)	dQ Orbite	r Out, w/ Pene	trator (W)	dQ Orbiter Out, w/o Penetrator (W)			
Spacecraft Ext Temperature (°C)	-40	-20	0	-40	-20	0	-40	-20	0	
Base	2		2	0.00	0.00	0.00	0.00	0.00	0.00	
Inset Mount 10cm ³	3.55	0.00	0.00	-2.90	0.90	1.22	0.23	0.33	0.44	
Inset Mount 20cm ³	3.55	0.00	0.00	-2.42	1.57	2.12	0.94	1.30	1.77	
Inset Mount 50cm ³	3.54	0.00	0.00	1.43	6.89	9.35	5.88	8.17	11.08	
Side Mount	3.55	0.00	0.00	-3.01	0.74	1.01	0.11	0.16	0.21	

Mounting Comparison Results

- Having an inset mounting slightly helps the required internal heat to warm the battery when the external spacecraft temperature is <-38.9°C
- A noticeable impact on the heat out of the orbiter can be observed on the inset mounting configurations
- To minimize impact on the orbiter, the side mounting configuration is recommended

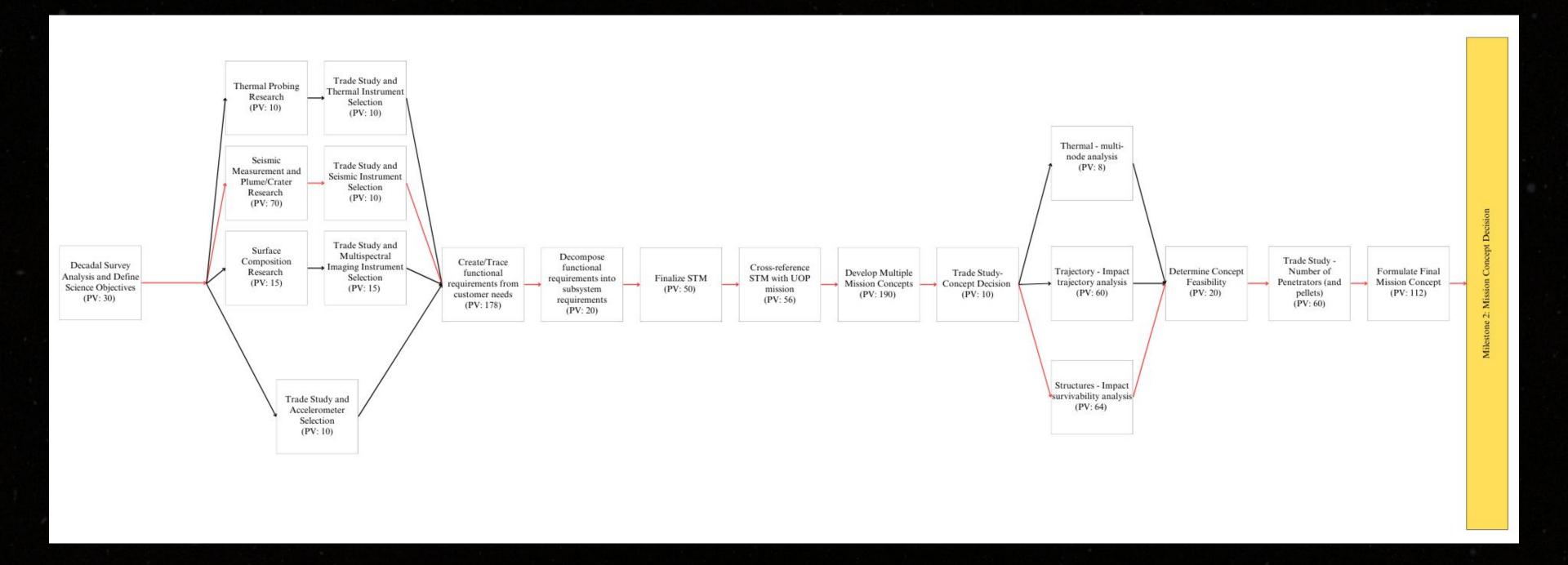
Output	Battery Hea	ter Steady Stat	te Power (W)	dQ Orbite	r Out, w/ Pene	trator (W)	dQ Orbiter Out, w/o Penetrator (W)			
Spacecraft Ext Temperature (°C)	-40	-20	0	-40	-20	0	-40	-20	0	
Base	밀	· ·	밀	0.00	0.00	0.00	0.00	0.00	0.00	
Inset Mount 10cm ³	3.55	0.00	0.00	-2.90	0.90	1.22	0.23	0.33	0.44	
Inset Mount 20cm ³	3.55	0.00	0.00	-2.42	1.57	2.12	0.94	1.30	1.77	
Inset Mount 50cm ³	3.54	0.00	0.00	1.43	6.89	9.35	5.88	8.17	11.08	
Side Mount	3.55	0.00	0.00	-3.01	0.74	1.01	0.11	0.16	0.21	

Surface Embedment Heater Analysis (1/2)

- Calculated a steady state thermal balance to determine heat required to keep batteries within operational limits
- Heat load on battery, Q
- Key conductions
 - G1, lcy surface to penetrator structure
 - Assume a high conduction, 100W/K
 - Can be refined in future based on pressure, surface roughness, etc.
 - G2, Penetrator structure to battery
 - Assume some thermal isolation
 - 10 W/K/m², 1/10th of an assumed good bolted area connection
 - Contact area = $2\pi(0.047m)(0.342m) = 0.101m^2$
 - 1.01 W/K
- Battery temperature
 - -45°C = 228.15 K
- Moon surface temperature
 - 30 K, Worst case from [1]
- Q = (T_batt T_moon)/(R1+R2) = (T_batt T_moon)/(1/G1+1/G2) =(228.15 K 30 K)/(1/100 K/W + 1/1.01 K/W) = **198.1 W**

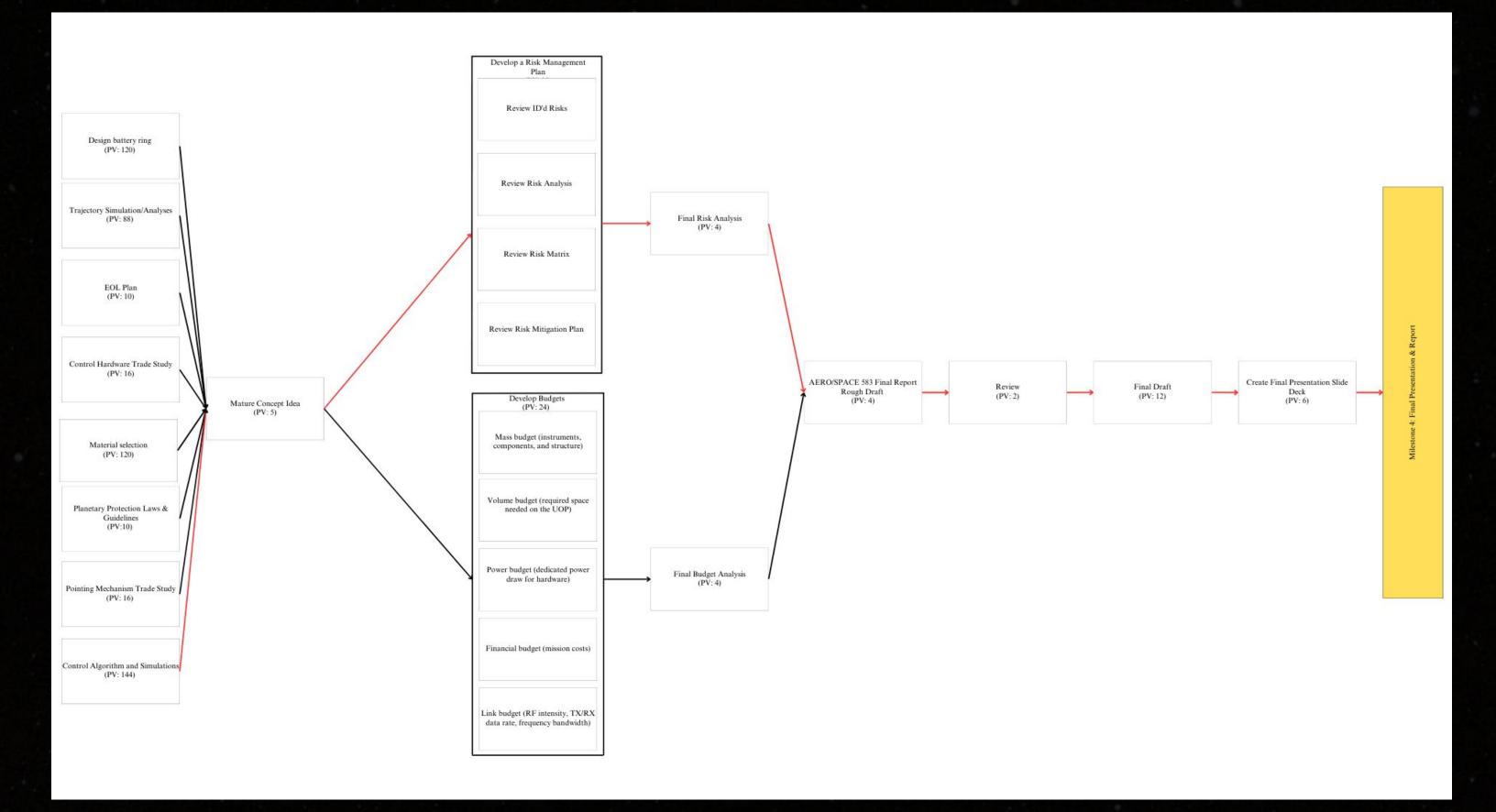
Figure 1. Annual temperature curves of all five satellites. Oberon's diurnal and seasonal variation is greater than that of its fellow satellites due to its longer day.

. 0


Surface Embedment Heater Analysis (2/2)

- Ran a transient on thermal model to determine how long the battery will remain in operational temperature limits given a steady internal heat load
- Will require significant internal heat to be within the battery operational limits
- Indicator of a short lifetime post-impact to collect, compress, and transmit data

Survival Time	Surface Temp = 70K Internal Heat (W)	Surface Temp = 30K Internal Heat (W)	Notes
1 min	0	0	From initialized temps, survives w/o heater power
10 min	9	32	
30 min	102	135	
1 hour	128	163	
6 hours	147	184	
12 hours	148	185	
1 day	148	185	
1 week	148	185	
1 month	148	185	



Critical Path

Multi-Spectral & Side-View Imager

Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q5.1c How Does Porosity, Ices, Liquids, or Gases Affect the Physical Properties of the Crust? Q12.8a What Can Observations of Material Reveal About Formation of Circumplanetary Systems?	Collect images of surface	Spectral composition and topography of surface	Observe surface during descent: Nadir-facing & azimuth facing	1. Downward facing multi-spectral imager (R, G, B, NIR-1, NIR-2; 10m) 2. Side-view imager (Visible; 10m) System	 Descent velocity shall allow sufficient time for image capture, processing, and onboard storage. Penetrator shall shield imager from environment and vibrations on descent

Vis/NIR Imaging Spectrometer & WAC (Lucy L'Ralph)

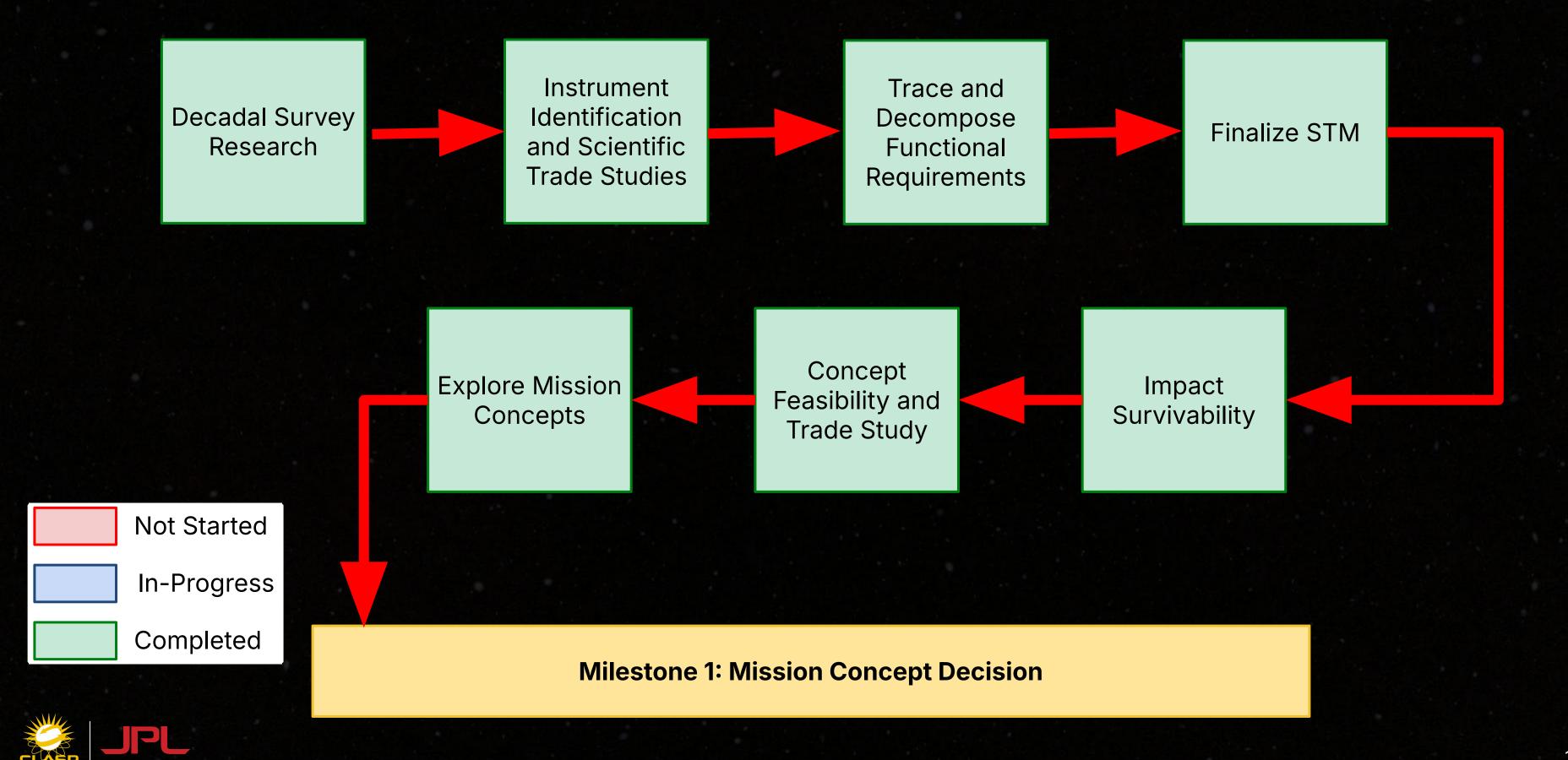
Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q5.1c How Does the Presence of Porosity, Ices, Liquids, or Gases Affect the Physical (e.g., Mechanical, Thermal, Electromagnetic) Properties of the Crust? Q12.8a What Can Observations of Circumplanetary Material Reveal About the Formation and Evolution of Circumplanetary Systems?	Determine chemical composition of the moon's surface.	Quantify key chemical elements and minerals in the satellite's impact plume.	Vis Spectroscopy (remote sensing) Imaging of impact flash	Vis/NIR Imaging Spectrometer & WAC (Lucy L'Ralph)	The penetrator shall maintain line of sight with the orbiter during its impact. Maximize regolith displacement for orbiter to image.
	Measure impact site physical properties on the large moon.	Determine surface hardness of the Uranian moons	Crater size at impact site of penetrators and impactors	(Note - This will be on main orbiter)	The penetrator shall create a crater with radius 3-15 meters for the flagship mission to image
Q4.4b What Materials Ejected from Impact Craters Are Deposited on Planetary Surfaces?	Observe the trajectories of ejecta from ice moon impacts	Observe the impact on the moon's surface Calculate ejecta percentages: surface return, escape, or orbit.	Surface imagery		 The penetrator shall impact the moon within line of sight of the orbiter The pellet shall impact the target moon only during flybys where the orbiter's altitude is less than 500 km

Uniaxial impact accelerometer

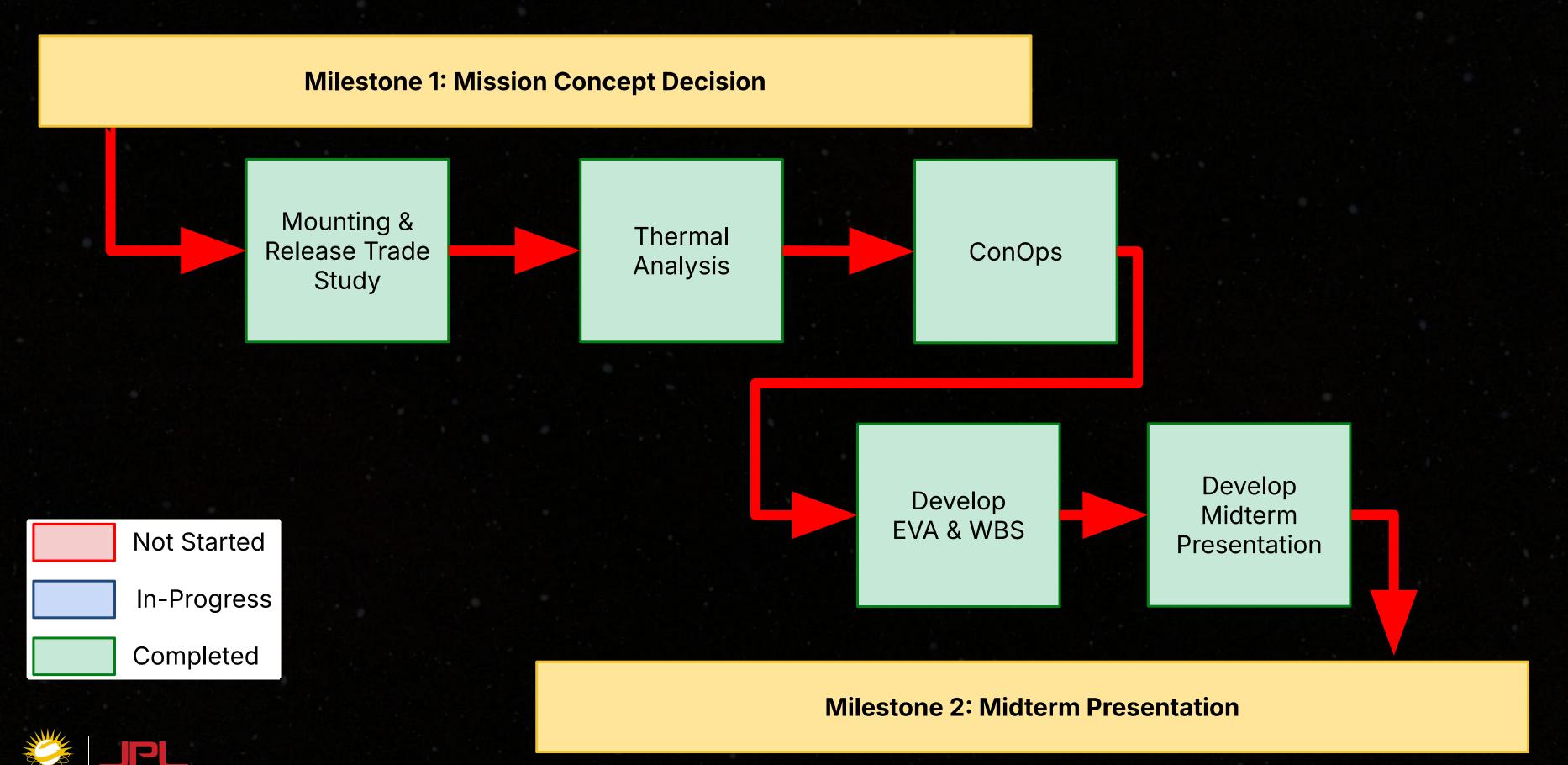
Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q5.1c How Does the Presence of Porosity, Ices, Liquids, or Gases Affect the Physical (e.g., Mechanical, Thermal, Electromagnetic) Properties of the Crust?	Determine the physical properties of the large moon's surface at the point of impact	Determine the surface hardness of the Uranian moons	Deceleration profile	Uniaxial impact accelerometer	The accelerometer must record data at [TBR] readings/sec to detect the exact moment of impact and the subsequent deceleration profile

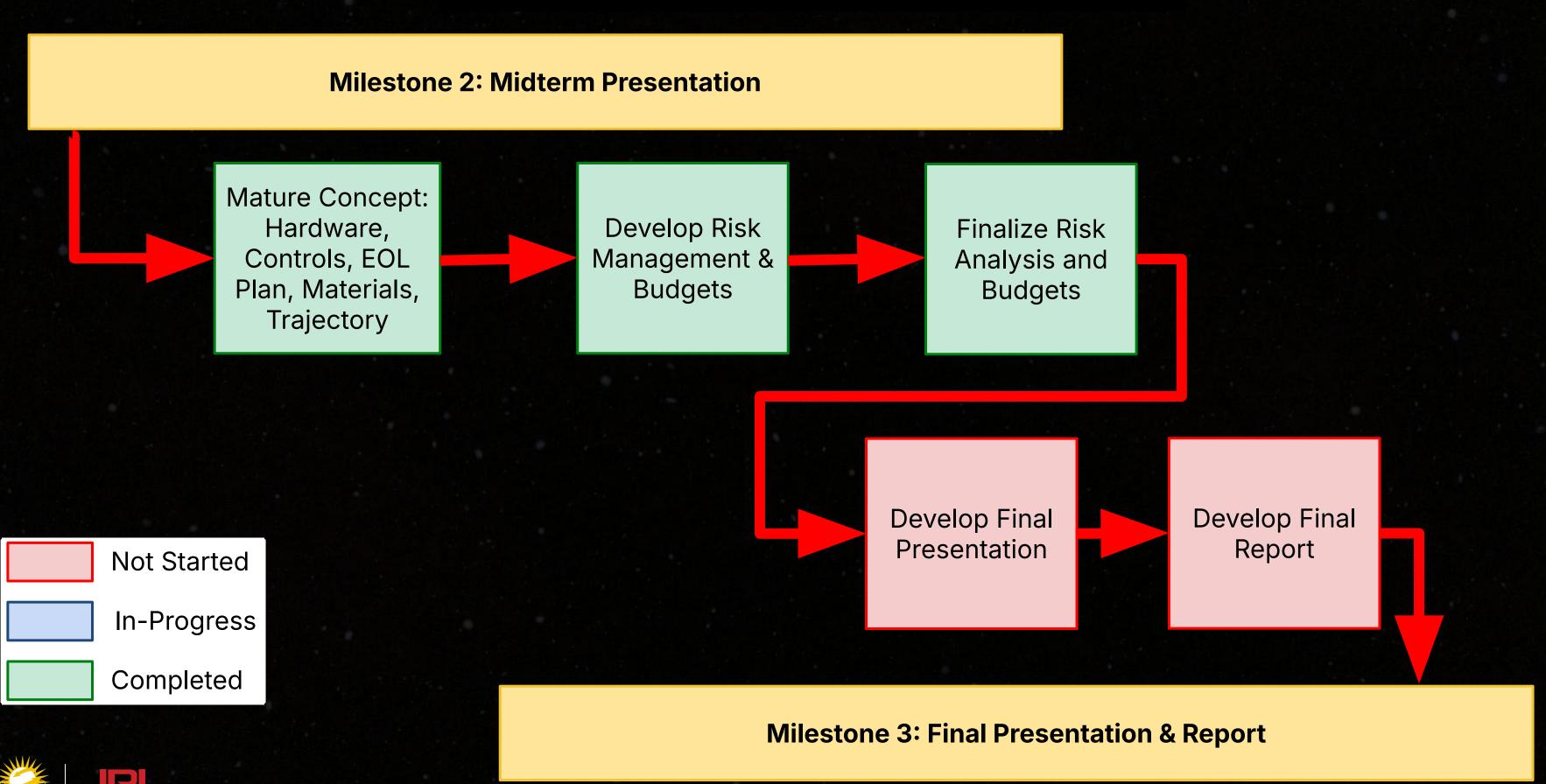
MEMS Seismometer

Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q5.1a How Much Variability in Composition and Internal Structure Is There Within and Between Solid Bodies, and How Did Such Variability Arise and Evolve?	Probe the interior of the Uranian satellites	Determine the interior composition and structure of the Uranian moons Determine the thickness of the ice sheet of Uranian moons	Seismic Noise If staying on the surface (Coda of Body waves, harmonic frequency of Crary wave)	MEMS Seismometer	The penetrator should survive the impact The instrument shall have a high signal to noise ratio



Germanium RTDs


Decadal Survey Recommendation	Science Goals	Scientific Objectives	Measurement	Nominal Instrument	Functional Requirement
Q8.2f How Are Heat and Material Transported Through—and Ultimately Out of—Satellite Interiors? Q5.1a How Much Variability in Composition and Internal Structure Is There Within and Between Solid Bodies, and How Did Such Variability Arise and Evolve?	Determine the thermal properties of the moon's surface	Infer thermal conductivity and heat dissipation rates across the surface of the moon	1. Measure post-impact temperature decay in regolith 2. Compare temperature profiles at different depths (2) within the impactor 1. Measure post-impact temperature profiles at different depths (2) within the impactor	Germanium Resistance Temperature Detector	 RTD shall survive expected impact forces. RTD shall remain operational in low temperatures RTD shall take high-frequency temperature readings post-impact RTD shall provide 1kb of data per hour even with minimal battery life, up to one week. RTD shall delve at least 0.5 meters into the surface of the satellite


Critical Path: Milestone 0-1

Critical Path: Milestone 1-2

Critical Path: Milestone 2-3

Camera Trade Study

		Trade	Matr	'ix												
	March Marc															
Choices Criteria		DRAC	O Imager (Bas	eline)	OSIRIS REX		CAMS (ECAM	Deep Impact		jeting Sensor	S	DL Deep Space	e Imager	Crystal	Space Cubsat	Camera
Must Haves		Info		Y/N	Info	moo,	Y/N	Info		Y/N	Info		Y/N	Info		Y/N
Shall have a maxi ~5 kg.	imum mass of	the primary in DRACO so probably able to	nstruments for o they were to provide more	No	with the TAGC	CAM so lumped	Yes	HRI/MRI mass be 90 kg. an much smaller	s is supposed to nd the MRI is r and the same	00000			Yes	not sure if t	not sure if they are rad	
Shall have a maxi of ~0.02 m^3.	imum volume			No	estimate ba diameter and	ased on the length of both	Yes	estimate ba	ased ont he	Yes	0.00	2 m^3	Yes	0.000	11 m^3	Yes
	e secondary	electronics a	and 5.2 W for	No			Yes			No	2	w	Yes	1	w	Yes
AND THE PERSON OF THE PERSON O				Yes			Yes			Yes			Yes			Yes
Wants	WT	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score
	200.000		0	0		0)	The second secon		0 Explicitly states	0				-
Survivability (Radiation /	10	tested, good	1	10	tested, and rad tested within	1	10	deep space,	1	10	0 hardened,	. 1	10	but not proven	0.6	6
Thermal)	10		1	10	years	-	10	impact, and rad	1	10	LEO, GEO, and	1	10	good for LEO	1	10
Constitution in Law	1000		0	0		0	100	navigating and) (0 and integration	0		No mention of	0	0
Operation in Low Light Conditions		asteroids	1	9	adjustable	1	9	dim low light	0.9	8.1	good for low	1	9	binning, or a	0.4	3.6
Capacimies (UF:	350	surfaces	1	9		1	9	environment	1 0	5	Untional RUB	1	9		1	9
frequency value is the max observed	11770	400-1000 nm	1	g		0.666666667	6	400-700 nm		1	Bayer or	1	9		0.5	4.5
frequency and	100.0		1.0		position filter	0.00000000				377	filters add to	-	-		1717	
normalized to min: 400 nm and	1570		1	9	Wheel, Visible	1	9	<u> </u>	1	5		1	9		1	9
			0	0	The point of	0	01	∄ '	0		0 0	0.5			0 0	0
Provide ADCS		DART's	7.0	-	TAGCAM is to	-		1 '	2.1	1 11	centroiding and	0.0		that use this	70.0	2.4
Support During Transit	8	guidance	1	8	navigation and ADCS for the		1 8	ADCS when in transit to the comet	1		nothing about	1	8	like its mainly to take pictures and not for	1	8
	7			177	with the 3.85		1000	and enough for guidance so	U		Compactionn		10.00	view, less than		7.5
Wide FOV	7	and not	0.4	2.8		0.7	-	probably good	0.7	4.9		0.3	2.1	the 80 deg that OCAM offered	0.5	3.5
	137.00	optimized for	0	0	MADOAMI	c	4	unuug	0	i		0	0	I- Ik	0	0
	6	1 /	-	2.4	Mbit/s SpW),	0.6	3.6	4 '	0.3	1.8		0.5	3		1	6
High Frame Rata	6	seconds. Good at prox but not	1	6	its not high speed but enough for navigation and helpful for ADCS	1	1 6	high frame rate, more on navigation			not fully defined, but the system appears to be	1	6	deg/rotation, seems to be optimized for	1	6
				0	could be a				-			0	1	그 경기 기가 하다 하는 것이 없는 것이다.	0	0
Ease of Integration	0200	can't just be	0.1	0.5	us, we can pick	C	3.0	filter wheel, this	1	4.5	like it can be	0.9	9.0	to adapt to	1	5
	255-11	standalone	1	5		- 1	5	for us	1		5 cubesats and	1	5	different	1	5
Previous Heritage	12.74	deep space	1	0	successful	0	01	provided	1		deep space	0.5		but only in	0.4	1.6
Previous ricinage			1	4	OSIRIS REX,	1	4	relevant data	1			1			1	4
EMI/EMC	1350-1	Likely rated,	0	0	Likely rated,		0	HRIso			0 rad tolerance	0	1	Low power	0	0
Compatibility	1 10000	be okay with	0.6	1.8	be okay with	0.6	1.8	assuming its	0.6	1.8		0.6	1.8		0.5	1.5
7			0	o	Some onboard	C	0	like it went	0	1	and tracking,	0	0	INO ORIDOARO	0	0
Onboard Processing		filtering etc, but	0.5	1		0.5	, 1		100		seems like it	1	1	require reliance	0.3	0.6
0.07747782 mm = 1	2	thoro	1	2	there	1	2	spacecraft	1		2 more onboard	1	2	hardware	1	2
		-					4						-			34.7
Total S	score			-									1000			55
						-		300000000000000000000000000000000000000			CONTRACTOR OF THE PARTY OF THE	DF .				
and the second second		-				+		Maximum:			Maximum:			Maximum:		

Accelerometer Trade Study

	Р	ERCI In	st	rur	nent Tr	ac	de S	Study:	Ac	се	lerome	te	r			
Choices		нвк түре :	8300		CRL Mod	1383		CRL Mod	el 876		PCB Piezotronics N	Model 3	50R41	PCB Piezotronics	Model 25	0R42
Links		TYPE 8309 Piezoelectri Accelerometer, Integr	c Charge		Columbia Research Model 3	Labora	atories -	Columbia Research Model 8	Labora	tories -	Model 350			Model 350		
Must Haves		Info		Y/N	Info		Y/N	Info		Y/N	Info	-	Y/N	Info		Y/N
Commercial off the shelf (COTS)		COTS		Yes *	COTS This sensor is built research laboratory - winventory		No *	COTS This sensor is built tresearch laboratory - verifications.		No *	cots		Yes *	COTS		Yes *
Piezoelectric (Charge Accelerometer)		Piezoelectric		Yes -	Piezoelectric		Yes -	Piezoelectric		Yes -	Piezoelectric		Yes -	Piezoelectric		Yes -
A13		3 grams		Yes *	0.28 Oz = ~7.37 gr	ams.	Yes -	1.2 Oz = -34.02	o	Yes -	27 g		Yes -	27 g		Yes +
High amplitude range / shock tolerance (>13000	g's)	, game		100	0.20 02 7.01 g		103	1.5 05 57.05	D	100	27.6		100	27.5		100
1744115	77 4	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value	Score
Low dynamic noise range	6	23 mg	1		5 N/A	0	0	N/A	0	0	N/A	. 0	0	N/A	0	0
High amplitude range / shock tolerance (>13000 g/s)	10	Highest operating shock 15000 g/s	1	10	Shock limit 20000 g's	0.7	7	Shock limit 10000 g's (1/2 sine)	0.5	5	1000000 g peak	1	10	50000 g peak	0.8	8
High sensivity - How many output volts per unit of acceleration (~10 mV/g)	7	0.004 pC/g Does not give its capacitance, so I am not sure what its sensitivity in voltage is	0		0.5 pC/g = 1.5 mV/g	0.85	5.95	@-420 deg F to -295 deg F 25 pC/g with 5% variability = 1.47 mV/g	0.853	5.971	0.05 mV/g	0.995	6.965	0.1 mV/g	0.99	6.93
High frequency range - within frequency range of SRS (~3 KHz) NOTE: Important to determine frequency response before final selection	7	1-54000 Hz If the instrument can measure the maximum frequency expected, it passes	1		2-15000 Hz If the instrument can measure the maximum frequency expected, it passes	1	. 7	2 - 4000 Hz If the instrument can measure the maximum frequency expected, it passes	0.8	5.6	4 - 10000 Hz If the instrument can measure the maximum frequency expected, it passes	1	7	4 - 10000 Hz If the instrument can measure the maximum frequency expected, it passes	1	7
High usable bandwidth Hard to determine without frequency response	8	N/A) N/A		0	N/A		0	N/A		0	N/A		0
Amplitude non-linearity	7	N/A	0		1%/2000 g	0.99	6.93	1% / 2000 g	0.99	6.93	2.5% / 10000 g	0.975	6.825	2.5% / 10000 g	0.975	6.825
Large operating temperature range Ideal: -30 - > 150 C	10	-74 - 180 C Score = (range below op temp - range above max temp spike)/100	1	10) -54 - 175 C	1	10	-267 - 149 C	1	10	-23 - 66 C Operating	0.9) 9	-23 - 66 C operating	0.9	9
Vacuum safe Not sure how to look for this information on data sheets	7							50.450.00064036			Acrilo subbacce alvelaci de cu					
Previous heritage	8	Nominal	W 1	3.	3 Nominal		36.88	Nominal		33.501	Nominal	394 3	39.79	Nominal	× 1	37.755
	3	Mimimum:			Mimimum:	Š.		Mimimum:		8	Mimimum:	3		Mimimum:		8
Total Solution Cost		Nominal:			Nominal:			Nominal:			Nominal:	0		Nominal:		<u> </u>
	1	Maximum:			Maximum:			Maximum:			Maximum:	8		Maximum:	1	- 2

Seismometer Trade Study

	F	PERCI Ir	nst	rur	ment Tr	ac	de	Study:	S	eis	mome	ter	8	5					25/			20		
		Trillium Compact l https://nanometrics.ca/hubf ta%20Sheets/trillium comp	s/Downl	oads/Da izon.pdf	Artius https://www.guralp.com	/produ	cts/artiu	Episenso https://kinemetrics.com oads/2017/04/datasheet	/wp-co	ontent/upl	Trillium Co https://nanometrics.cr s/Data%20Sheets/trill	/hubfs/l	Download	STRYDE Node https://dqifccr9a141x.cf ecsheet/The-STRYDE-1	cloudfront.net/s	p https://	MEMS Seism microdevices, es/nano-and-	ometer ipl.nasa.gov/ca nicro-systems/	https://v	GS-1 Seismomo www.geospace.com 1-seismometer/?ut	n/products/se			olla .com/products neter/?utm_so
es		Info		Y/N	Info		Y/N	Info		Y/N	Info		Y/N	Info	Y/N	Info		Y/N	Info		Y/N	Info		Y/N
ial off the shelf (COTS)		COTS	ž	Yes •	COTS		Yes *	COTS		Yes *	COTS		Yes ~	COTS	Yes	- In	dev at JPL	No -	2	COTS	Yes		COTS	Yes *
		1.1 kg		Yes *	1.4 kg		Yes +	1.8 kg		Yes *	1.2 kg		Yes *	150 g	Yes		N/A	Yes *		1.96kg	Yes		10kg	No *
h	WT	Info	Value :	Score	Info V	Value 3	Score	Info	Value	Score	Info	Value	Score	Info	Value Score	Info	Value	Score	Info	Value	Score	Info	Value	Score
ctrum for high and low frequency	8	.008 - 109 Hz	2	16	0.03 (30 s) - 200	5	40	DC - 200	3		0.0083 (120 s) - 108	2	1		1	8		(0 1 - 100H	400000	1	0.00833 F 8 to 50 Hz	ĺz.	2 16
rating temperature range -> 150 C	4	-50 - 60C	3	12	-20 - 70	3	12	-20 - 70	3	12	-20 - 60	3	1	2 -30 - 70	4	16		(0 -40 - 60	0	4	6 -20 - 60	8	3 12
,	6	754 V·s/m (±0.5%); 2.4 ng/√Hz @10 Hz	5	30	500 V-s/m; 145 dB DR; low noise	3		155 dB DR; noise ≤ 1 ng/√Hz (est.)	4	24	753 V·s/m; 156 dB DR	5	3	0 22 ng/√Hz @16 dB	2	12		(Hiugh 0 sensitivit		4 :	1200V/m (±0.5%):		5 30
nce	5	±2.5 (120 s) /±10 (20 s)	3	15	±5	5	25	N/A	1	5	±2.5 / ±10	3	1.	5 N/A	1	5		(0 ±2		4 :	0 ±2		4 20
ployed without direct contact with nment	2	Yes		0	N/A		0	N/A		0	Yes			D N/A		0			0 No		0	0 No		0 0
	1	64 GB	5	5	64 GB	5	5	N/A	1	1	64 GB	5		5 64 GB	5	5			0 N/A		1	1 N/A		1 1
a collection	3	N/A	1	3	1-1000 sps	5	15	N/A	1	3	N/A	1		3 500-1000 sps	3	9			D N/A		1	3 N/A		1 3
	7	100 g	5	35	N/A	1	7	100 g	5	35	100 g	5	3.	5 High-shock tolerant	3	21		(0 N/A		1	7 810g		5 35
isumption	5	180-120 mW	5	25	600 mW @ 7-16V	3	15	1,2000 mW @ 12V	2	10	180-120 mW	5	2	5 N/A	1	5			0 Passive	,	4	0 N/A		1 5
		Nominal		81	Nominal		115	Nominal		69	Nominal		8	l Nominal		55 Nomina	1	(Nominal	1	3	2 Nominal		82

RTD Trade Study

					PER	CI	Ins	strume	nt	Tra	ade Stu	ıdy:	RT	Ds	
Choices Criteria		Germanium (G			Platinum (P	T-111)		Cernox I		Y/N	Silicon Diode (C)				
Must Haves Operating Temp Range (within a range c-223.15°C(50K) to -198.15°C (75K)in the Commercial off the shelf (COTS) Option Available	of e body)	**************************************		Y/N Yes *	14 K - 1123.15 K options available COTS		Y/N Yes *	0.1 K - 420 K opti- available	ons Yes *		1.4 K - 500 K	Y/N Yes Yes	5.0		Y/N
Low Power Operation (<10 mW)	,	10^-7 to 10^-6 W from		105	Faterritation = Formulati	2000 DAY 10		10-7 to 10-6 W from	10K -	23 0000	60000000000000000000000000000000000000	00 00 00	50		723
		100K			10^5 W from 10K - 10	00K Yes *		100K		Yes *	10 μW (10 μA excita	ation) Yes	-		*
Wants	WT	Info	Value	Score	Info	Value	Score	Info	Value	Score	Info	Value Scor	e Info	Va	lue Score
Temperature Errors (delta T / T) in Magnetic Field Range of percent. Assigned Value: < 0.1 % 7-10 0.1% - 1.0 % 3-6 > 1.0 %. 1-2	1	-3 <> -20 % (20K) (2.5 T)	1	1	0.04 % (87K) (2.5 T)	4	4	0.002 % (77K) (2.5 T)	10	10	-0.3 % (80K) (2 T) Junction perpindicular to field	6	6	-	0
Radiation Resilient (Largest delta T error up to 100K [magnitude])	6	17 mK	5	30	100 mK	4.5778	27.4669	40 mK	4.8830	29.2980	~1000 mK	0	0		0
Measurement Reproducibility (using 77 K)	10	±0.5 mK reproducibility at 4.2 K, +- 20mK at 77 K	4.6938	46.9387	High Reproducibility: +-5mK at 77K	5	50	±0.5 mK at 4.2 K, ±16 mK at 77 K	4.7755	47.7551	±0.25 K from 2 K to 100 K	0	0		0
Thermal Response (using 77 K)	7	Thermal response time 200 ms at 4.2 K 3 s at 77 K	0	0	2.5 s at 77K	0.8369	5.85872	50ms - 1s at 77K based on packaging options (using 250ms SD packaging option)	4.6032	32.2229	BR Model: 1 ms @ 4.2 K. 13 ms @ 77 K,	5	35		0
Resitive Sensitivity	4				3		6 S	8			From 25 K to 500 K, a silicon diode has a nearly constant sensitivity of 2.3 mV/K				0
		2		0			0			0			0		0
?	0	3		0			0			0			0	_	0
?	0			0			0			0			0		0
?	0	9.		0		2	0			0		6 6	0		0
				0			0	8		0			0		0
? Total Score	0	Minimum Nominal Maximum		0 77.9387 0		3	0 87.3256			0 119.276			0 0 41 0		0 0 0

